Skip to main content
Log in

On the sensitivity of the optimal partition for parametric second-order conic optimization

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper, using an optimal partition approach, we study the parametric analysis of a second-order conic optimization problem, where the objective function is perturbed along a fixed direction. We characterize the notions of so-called invariancy set and nonlinearity interval, which serve as stability regions of the optimal partition. We then propose, under the strict complementarity condition, an iterative procedure to compute a nonlinearity interval of the optimal partition. Furthermore, under primal and dual nondegeneracy conditions, we show that a boundary point of a nonlinearity interval can be numerically identified from a nonlinear reformulation of the parametric second-order conic optimization problem. Our theoretical results are supported by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In this context, \(\infty \) simply means that the primal problem is infeasible.

  2. Inspired by the Goldman-Tucker theorem [17], the concept of the optimal partition for LO is well-known in the literature of IPMs, see e.g., [35].

  3. In this paper, strong duality means that the duality gap is zero at optimality, and the optimal sets \({\mathcal {P}}^*(\epsilon )\) and \({\mathcal {D}}^*(\epsilon )\) are nonempty.

  4. Here, local boundedness is equivalent to uniform compactness in [23].

  5. See [28, Example 3.1] for an instance of a parametric SDO problem with infinitely many singleton invariancy sets.

  6. For this problem, both the primal and dual optimal set mappings are continuous at the transition point \(\epsilon = 0\).

  7. For the ease of exposition, we simply rule out the existence of an invariancy interval here. Otherwise, as indicated in Remark 5, this procedure can also be applied to invariancy intervals.

  8. Since \({\mathcal {P}}^*(\epsilon ) \times {\mathcal {D}}^*(\epsilon )\) is single-valued and locally bounded at \({\bar{\epsilon }}\), see (8), for every ball \({\mathbb {B}}_r\) of radius r centered at \(\big (x^*({\bar{\epsilon }});y^*({\bar{\epsilon }});s^*({\bar{\epsilon }})\big )\) there exists a neighborhood V of \({\bar{\epsilon }}\) such that \({\mathcal {P}}^*(\epsilon ) \times {\mathcal {D}}^*(\epsilon ) \subseteq {\mathbb {B}}_r\) for every \(\epsilon \in V\), see [34, Proposition 5.12(a)]. Therefore, it is always possible to find such an \({\hat{\epsilon }}\) with both desired properties.

  9. The perturbation theory of invariant subspaces states that the eigenspace associated with the cluster of positive eigenvalues of \(L\big (x^{*i}({\bar{\epsilon }})\big )\) stays near that of \(L\big (x^{*i}({\hat{\epsilon }})\big )\).

  10. On an open set \(U \subseteq {\mathbb {R}}\), a mapping f(x) is real analytic if for any given \(x_0 \in U\)

    $$\begin{aligned} f(x)=\sum _{k=0}^{\infty } \frac{\big (f(x_0)\big )^{(k)}}{k!} (x-x_0)^k \end{aligned}$$

    for all x in a neighborhood of \(x_0\), where \((.)^{(k)}\) denotes the \(k{\mathrm {th}}\)-order derivative. See [25, Definition 1.1.5] for further properties of an analytic mapping.

  11. In fact, using (20), (25), and (29) we can generate an optimal solution \(\big (x^*(\epsilon );y^*(\epsilon );s^*(\epsilon )\big )\) for \((\mathrm {P}_{\epsilon })\) and \((\mathrm {D}_{\epsilon })\), see [26, Section 3], which then proves to be unique for every \(\epsilon \) sufficiently close to \({\bar{\epsilon }}\).

  12. Interestingly, the duality gap is zero at the boundary point \(\epsilon = 1-\sqrt{2}\), with the finite optimal value \(1/\sqrt{2}\). However, the optimal value of (32) is not attained, and its dual fails to have a strictly feasible solution.

  13. As defined in [28, Definition 1.1], \(\big (X^*(\epsilon ),y^*(\epsilon ),S^*(\epsilon )\big )\) is a maximally complementary optimal solution of \((\mathrm {P}'_{\epsilon })\) and \((\mathrm {D}'_{\epsilon })\) if \({{\,\mathrm{rank}\,}}\!\big (X^*(\epsilon )\big ) + {{\,\mathrm{rank}\,}}\!\big (S^*(\epsilon )\big )\) is maximal on \(\mathcal {P}'^*(\epsilon ) \times \mathcal {D}'^*(\epsilon )\).

References

  1. Adler, I., Monteiro, R.D.C.: A geometric view of parametric linear programming. Algorithmica 8(1), 161–176 (1992)

    Article  MathSciNet  Google Scholar 

  2. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95(1), 3–51 (2003)

    Article  MathSciNet  Google Scholar 

  3. Andersen, E., Roos, C., Terlaky, T.: On implementing a primal-dual interior-point method for conic quadratic optimization. Math. Program. 95(2), 249–277 (2003)

    Article  MathSciNet  Google Scholar 

  4. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer, New York (2006)

    Book  Google Scholar 

  5. Berge, C.: Topological Spaces: Including a Treatment of Multi-valued Functions, Vector Spaces, and Convexity. Dover Publications, Mineola (1997)

    MATH  Google Scholar 

  6. Berkelaar, A.B., Jansen, B., Roos, C., Terlaky, T.: Sensitivity analysis in (degenerate) quadratic programming. Technical Report 96-26, Delft University of Technology, Netherlands (1996)

  7. Bertsekas, D.: Convex Optimization Theory. Athena Scientific, Nashua (2009)

    MATH  Google Scholar 

  8. Bonnans, J.F., Ramírez, C.H.: Perturbation analysis of second-order cone programming problems. Math. Program. 104(2), 205–227 (2005)

    Article  MathSciNet  Google Scholar 

  9. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  Google Scholar 

  10. Cheung, Y.L., Schurr, S., Wolkowicz, H.: Preprocessing and regularization for degenerate semidefinite programs. In: Bailey, D.H., Bauschke, H.H., Borwein, P., Garvan, F., Théra, M., Vanderwerff, J.D., Wolkowicz, H. (eds.) Computational and Analytical Mathematics, pp. 251–303. Springer, New York (2013)

    Chapter  Google Scholar 

  11. Dieudonné, J.: Foundations of Modern Analysis. Academic Press, New York (1960)

    MATH  Google Scholar 

  12. Fiacco, A.V.: Sensitivity analysis for nonlinear programming using penalty methods. Math. Program. 10(1), 287–311 (1976)

    Article  MathSciNet  Google Scholar 

  13. Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Academic Press, New York (1983)

    MATH  Google Scholar 

  14. Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Society for Industrial and Applied Mathematics, Philadelphia (1990)

    Book  Google Scholar 

  15. Ghaffari-Hadigheh, A., Ghaffari-Hadigheh, H., Terlaky, T.: Bi-parametric optimal partition invariancy sensitivity analysis in linear optimization. Cent. Eur. J. Oper. Res. 16(2), 215–238 (2008)

    Article  MathSciNet  Google Scholar 

  16. Goldfarb, D., Scheinberg, K.: On parametric semidefinite programming. Appl. Numer. Math. 29(3), 361–377 (1999)

    Article  MathSciNet  Google Scholar 

  17. Goldman, A.J., Tucker, A.W.: Theory of linear programming. In: Kuhn, H.W., Tucker, A.W. (eds.) Linear Equalities and Related Systems, pp. 53–97. Princeton University Press, Princeton (1956)

    Google Scholar 

  18. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control. Lecture Notes in Control and Information Sciences, pp. 95–110. Springer, New York (2008)

    Google Scholar 

  19. Grant, M., Boyd, S.: CVX: MATLAB software for disciplined convex programming, version 2.1. http://cvxr.com/cvx (2014)

  20. Greenberg, H.J.: The use of the optimal partition in a linear programming solution for postoptimal analysis. Oper. Res. Lett. 15(4), 179–185 (1994)

    Article  MathSciNet  Google Scholar 

  21. Hang, N.T.V., Mordukhovich, B.S., Sarabi, M.E.: Second-order variational analysis in second-order cone programming. Math. Program. 180(1), 75–116 (2020)

    Article  MathSciNet  Google Scholar 

  22. Hauenstein, J.D., Mohammad-Nezhad, A., Tang, T., Terlaky, T.: On computing the nonlinearity interval in parametric semidefinite optimization (2019). arXiv:1908.10499

  23. Hogan, W.W.: Point-to-set maps in mathematical programming. SIAM Rev. 15(3), 591–603 (1973)

    Article  MathSciNet  Google Scholar 

  24. Jansen, B., Roos, C., Terlaky, T.: An interior point approach to postoptimal and parametric analysis in linear programming. Technical Report 92-21, Delft University of Technology, Netherlands (1992)

  25. Krantz, S.G., Parks, H.R.: A Primer of Real Analytic Functions. Springer, New York (2002)

    Book  Google Scholar 

  26. Mohammad-Nezhad, A., Terlaky, T.: Quadratic convergence to the optimal solution of second-order conic optimization without strict complementarity. Optim. Methods Softw. 34(5), 960–990 (2019)

    Article  MathSciNet  Google Scholar 

  27. Mohammad-Nezhad, A., Terlaky, T.: On the identification of the optimal partition for semidefinite optimization. INFOR Inf. Syst. Oper. Res. 58(2), 225–263 (2020)

    MathSciNet  Google Scholar 

  28. Mohammad-Nezhad, A., Terlaky, T.: Parametric analysis of semidefinite optimization. Optimization 69(1), 187–216 (2020)

    Article  MathSciNet  Google Scholar 

  29. Mordukhovich, B.S., Outrata, J.I.V., Sarabi, M.E.: Full stability of locally optimal solutions in second-order cone programs. SIAM J. Optim. 24(4), 1581–1613 (2014)

    Article  MathSciNet  Google Scholar 

  30. Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics, Philadelphia (1994)

    Book  Google Scholar 

  31. Oxtoby, J.C.: Measure and Category: A Survey of the Analogies between Topological and Measure Spaces. Springer, New York (1980)

    Book  Google Scholar 

  32. Robinson, S.M.: Generalized equations and their solutions, part II: applications to nonlinear programming. In: Guignard, M. (ed.) Optimality and Stability in Mathematical Programming, vol. 19, pp. 200–221. Springer, Berlin (1982)

    Chapter  Google Scholar 

  33. Rockafellar, R., Dontchev, A.: Implicit Functions and Solution Mappings: A View from Variational Analysis. Springer, New York (2014)

    MATH  Google Scholar 

  34. Rockafellar, R., Wets, R.J.B.: Variational Analysis, vol. 317. Springer, New York (2009)

    MATH  Google Scholar 

  35. Roos, C., Terlaky, T., Vial, J.P.: Interior Point Methods for Linear Optimization. Springer, New York (2005)

    MATH  Google Scholar 

  36. Sekiguchi, Y., Waki, H.: Perturbation analysis of singular semidefinite programs and its applications to control problems. J. Optim. Theory Appl. 188(1), 52–72 (2021)

    Article  MathSciNet  Google Scholar 

  37. Shapiro, A.: First and second order analysis of nonlinear semidefinite programs. Math. Program. 77(1), 301–320 (1997)

    Article  MathSciNet  Google Scholar 

  38. Sim, C.K., Zhao, G.: A note on treating a second order cone program as a special case of a semidefinite program. Math. Program. 102(3), 609–613 (2005)

    Article  MathSciNet  Google Scholar 

  39. Stewart, G.W.: Error and perturbation bounds for subspaces associated with certain eigenvalue problems. SIAM Rev. 15(4), 727–764 (1973)

    Article  MathSciNet  Google Scholar 

  40. Terlaky, T., Wang, Z.: On the identification of the optimal partition of second order cone optimization problems. SIAM J. Optim. 24(1), 385–414 (2014)

    Article  MathSciNet  Google Scholar 

  41. Todd, M.J.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)

    Article  MathSciNet  Google Scholar 

  42. Yildirim, E.: Unifying optimal partition approach to sensitivity analysis in conic optimization. J. Optim. Theory Appl. 122(2), 405–423 (2004)

    Article  MathSciNet  Google Scholar 

  43. Zlobec, S., Gardner, R., Ben-Israel, A.: Regions of stability for arbitrarily perturbed convex programs. In: Fiacco, A.V. (ed.) Mathematical Programming with Data Perturbations I, pp. 69–89. M. Dekker, New York (1982)

    Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the anonymous referees for their insightful comments and suggestions. We are indebted to Professor Saugata Basu for bringing the semi-algebraic properties of transition points to our attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Terlaky.

Additional information

This paper is dedicated to Marco Lopez on the occasion of his 70th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by Air force Office of Scientific Research (AFOSR) Grant # FA9550-15-1-0222.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad-Nezhad, A., Terlaky, T. On the sensitivity of the optimal partition for parametric second-order conic optimization. Math. Program. 189, 491–525 (2021). https://doi.org/10.1007/s10107-021-01690-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-021-01690-7

Keywords

Mathematics Subject Classification

Navigation