Skip to main content
Log in

Reactive transport modelling of concurrent chloride ingress and carbonation in concrete

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The carbonation is a fundamental durability process for concrete structures exposed to nearly all environments. In air-borne chloride environments, the chloride ingress occurs simultaneously with the carbonation, constituting a multi-phase and multi-species transport-reaction problem. This paper regards concrete as a reactive porous medium partially saturated by pore solution and addresses this problem through a comprehensive transport-reaction model taking into account the dissociation and dissolution–precipitation equilibria in pore solution, transport of gas and aqueous phases and local electrical field. Especially the incongruent dissolution of C–S–H is addressed, a coating-reaction kinetics is assumed for the CH carbonation and new chloride adsorption laws are used upon carbonation of C–S–H. The established model is solved through finite volume method and validated by laboratory experiments of chloride ingress in carbonated OPC concretes. The parametric analysis for concurrent carbonation and chloride ingress under constant relative humidity shows that: (1) the concurrent carbonation will globally promote the chloride ingress and the involved corrosion risk for embedded steel; (2) the significant RH range for this carbonation impact will be on medium levels around 75%; (3) the concretes incorporating SCMs, especially in large quantities, will behave differently to the influence of carbonation. Accordingly, the concurrent carbonation should be considered in appropriate way in durability design against chloride ingress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mirza S (2006) Durability and sustainability of infrastructure—a state-of-the-art report. Can J Civ Eng 33(6):639–649. https://doi.org/10.1139/l06-049

    Article  Google Scholar 

  2. Ahmad S (2003) Reinforcement corrosion in concrete structures, its monitoring and service life prediction—a review. Cement Concr Comp 25(4–5):459–471

    Article  Google Scholar 

  3. Swamy RN, Suryavanshi AK, Tanikawa S (1998) Protective ability of an acrylic-based surface coating system against chloride and carbonation penetration into concrete. Aci Mater J 95(2):101–112

    Google Scholar 

  4. Wang K, Nelsen DE, Nixon WA (2006) Damaging effects of deicing chemicals on concrete materials. Cement Concr Compos 28(2):173–188. https://doi.org/10.1016/j.cemconcomp.2005.07.006

    Article  Google Scholar 

  5. Costa A, Appleton J (2001) Concrete carbonation and chloride penetration in a marine environment. Concr Sci Eng 3:242–249

    Google Scholar 

  6. Castro P, Moreno EI, Genesca J (2000) Influence of marine micro-climates on carbonation of reinforced concrete buildings. Cement Concr Res 30(10):1565–1571

    Article  Google Scholar 

  7. Liu J, Qiu Q, Chen X, Xing F, Han N, He Y, Ma Y (2017) Understanding the interacted mechanism between carbonation and chloride aerosol attack in ordinary Portland cement concrete. Cement Concr Res 95:217–225. https://doi.org/10.1016/j.cemconres.2017.02.032

    Article  Google Scholar 

  8. Ye H, Jin X, Fu C, Jin N, Xu Y, Huang T (2016) Chloride penetration in concrete exposed to cyclic drying-wetting and carbonation. Constr Build Mater 112:457–463. https://doi.org/10.1016/j.conbuildmat.2016.02.194

    Article  Google Scholar 

  9. Backus J, McPolin D, Basheer M, Long A, Holmes N (2013) Exposure of mortars to cyclic chloride ingress and carbonation. Adv Cem Res 25(1):3–11

    Article  Google Scholar 

  10. Li K, Zhang Y, Wang S, Zeng J (2018) Impact of carbonation on the chloride diffusivity in concrete: experiment, analysis and application. Mater Struct. https://doi.org/10.1617/s11527-018-1295-8

    Article  Google Scholar 

  11. Li K, Zhao F, Zhang Y (2019) Influence of carbonation on the chloride ingress into concrete: theoretical analysis and application to durability design. Cement Concr Res. https://doi.org/10.1016/j.cemconres.2019.105788

    Article  Google Scholar 

  12. Arya C, Buenfeld NR, Newman JB (1987) Assessment of simple methods of determining the free chloride-ion content of cement paste. Cement Concr Res 17(6):907–918

    Article  Google Scholar 

  13. Papadakis VG, Vayenas CG, Fardis MN (1991) Fundamental modeling and experimental investigation of concrete carbonation. Aci Mater J 88(4):363–373

    Google Scholar 

  14. Glass GK, Page CL, Short NR (1991) Factors affecting the corrosion rate of steel in carbonated mortars. Corros Sci 32(12):1283–1294. https://doi.org/10.1016/0010-938x(91)90048-t

    Article  Google Scholar 

  15. Neville A (1995) Chloride attack of reinforced concrete: an overview. Mater Struct 28(2):63–70. https://doi.org/10.1007/bf02473172

    Article  Google Scholar 

  16. Arya C, Buenfeld NR, Newman JB (1990) Factors influencing chloride-binding in concrete. Cement Concr Res 20(2):291–300. https://doi.org/10.1016/0008-8846(90)90083-a

    Article  Google Scholar 

  17. Kayyali OA, Haque MN (1995) The C1−/OH−ratio in chloride-contaminated concrete—a most important criterion. Mag Concr Res 47(172):235–242. https://doi.org/10.1680/macr.1995.47.172.235

    Article  Google Scholar 

  18. Ngala VT, Page CL (1997) Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes. Cement Concr Res 27(7):995–1007. https://doi.org/10.1016/s0008-8846(97)00102-6

    Article  Google Scholar 

  19. Saeki T, Ohga H, Nagataki S (1990) Change in micro-structure of concrete due to carbonation. Doboku Gakkai Ronbunshu (420):33-42. doi:https://doi.org/10.2208/jscej.1990.420_33

  20. Pu Q, Jiang L, Xu J, Chu H, Xu Y, Zhang Y (2012) Evolution of pH and chemical composition of pore solution in carbonated concrete. Constr Build Mater 28(1):519–524. https://doi.org/10.1016/j.conbuildmat.2011.09.006

    Article  Google Scholar 

  21. Saillio M, Baroghel-Bouny V, Barberon F (2014) Chloride binding in sound and carbonated cementitious materials with various types of binder. Constr Build Mater 68:82–91. https://doi.org/10.1016/j.conbuildmat.2014.05.049

    Article  Google Scholar 

  22. Zhu X, Zi G, Cao Z, Cheng X (2016) Combined effect of carbonation and chloride ingress in concrete. Constr Build Mater 110:369–380. https://doi.org/10.1016/j.conbuildmat.2016.02.034

    Article  Google Scholar 

  23. Geng J, Easterbrook D, Liu Q-F, Li L-Y (2016) Effect of carbonation on release of bound chlorides in chloride-contaminated concrete. Mag Concr Res 68(7):353–363. https://doi.org/10.1680/jmacr.15.00234

    Article  Google Scholar 

  24. Maekawa K, Ishida T, Kishi T (2003) Multi-scale modeling of concrete performance. J Adv Concr Technol 1(2):91–126

    Article  Google Scholar 

  25. Puatatsananon W, Saouma VE (2005) Nonlinear coupling of carbonation and chloride diffusion in concrete. J Mater Civ Eng 17(3):264–275. https://doi.org/10.1061/(asce)0899-1561(2005)17:3(264)

    Article  Google Scholar 

  26. Conciatori D, Laferriere F, Bruhwiler E (2010) Comprehensive modeling of chloride ion and water ingress into concrete considering thermal and carbonation state for real climate. Cement Concr Res 40(1):109–118

    Article  Google Scholar 

  27. Shen X-h, Jiang W-q, Hou D, Hu Z, Yang J, Liu Q-f (2019) Numerical study of carbonation and its effect on chloride binding in concrete. Cement Concr Compos. https://doi.org/10.1016/j.cemconcomp.2019.103402

    Article  Google Scholar 

  28. Isgor OB, Weiss WJ (2019) A nearly self-sufficient framework for modelling reactive-transport processes in concrete. Mater Struct 52:1–7

    Article  Google Scholar 

  29. Azad VJ, Isgor OB (2017) Modeling chloride ingress in concrete with thermodynamically calculated chemical binding. Int J Adv Eng Sci Appl Math 9(2):97–108. https://doi.org/10.1007/s12572-017-0189-2

    Article  Google Scholar 

  30. Azad VJ, Li C, Verba C, Ideker JH, Isgor OB (2016) A COMSOL–GEMS interface for modeling coupled reactive-transport geochemical processes. Comput Geosci 92:79–89. https://doi.org/10.1016/j.cageo.2016.04.002

    Article  Google Scholar 

  31. Hosokawa Y, Yamada K, Johannesson B, Nilsson L-O (2011) Development of a multi-species mass transport model for concrete with account to thermodynamic phase equilibriums. Mater Struct 44(9):1577–1592. https://doi.org/10.1617/s11527-011-9720-2

    Article  Google Scholar 

  32. Shen J, Dangla P, Thiery M (2013) Reactive transport modeling of CO2 through cementitious materials under CO2 geological storage conditions. Int J Greenh Gas Control 18:75–87. https://doi.org/10.1016/j.ijggc.2013.07.003

    Article  Google Scholar 

  33. Morandeau A, Thiéry M, Dangla P (2014) Investigation of the carbonation mechanism of CH and C–S–H in terms of kinetics, microstructure changes and moisture properties. Cement Concr Res 56:153–170. https://doi.org/10.1016/j.cemconres.2013.11.015

    Article  Google Scholar 

  34. Dangla P, Thiery M, Morandeau A (2015) Thermodynamic of incongruent solubility of C–S–H. Adv Cement Res 27(10):601–609. https://doi.org/10.1680/adcr.15.00010

    Article  Google Scholar 

  35. Lothenbach B, Nonat A (2015) Calcium silicate hydrates: Solid and liquid phase composition. Cem Concr Res 78:57–70. https://doi.org/10.1016/j.cemconres.2015.03.019

    Article  Google Scholar 

  36. Kulik DA, Kersten M (2001) Aqueous solubility diagrams for cementitious waste stabilization systems: II, End-member stoichiometries of ideal calcium silicate hydrate solid solutions. J Am Ceram Soc 84(12):3017–3026. https://doi.org/10.1111/j.1151-2916.2001.tb01130.x

    Article  Google Scholar 

  37. Grandclerc A, Dangla P, Gueguen-Minerbe M, Chaussadent T (2018) Modelling of the sulfuric acid attack on different types of cementitious materials. Cement Concr Res 105:126–133. https://doi.org/10.1016/j.cemconres.2018.01.014

    Article  Google Scholar 

  38. Yuan H, Dangla P, Chatellier P, Chaussadent T (2013) Degradation modelling of concrete submitted to sulfuric acid attack. Cement Concr Res 53:267–277. https://doi.org/10.1016/j.cemconres.2013.08.002

    Article  Google Scholar 

  39. Greenberg SA, Chang TN (1965) Investigation of the colloidal hydrated calcium silicates. II. Solubility relationships in the calcium oxide-silica-water system at. The J Phys Chem 69(1):182–188

    Article  Google Scholar 

  40. Thoenen T, Kulik D (2003) Nagra/PSI chemical thermodynamic data base 01/01 for the GEM-Selektor (V. 2-PSI) Geochemical modeling code: Release 28–02–03. In: Internal Report TM–44–03–04.

  41. Lothenbach B, Winnefeld F (2006) Thermodynamic modelling of the hydration of Portland cement. Cement Concr Res 36(2):209–226. https://doi.org/10.1016/j.cemconres.2005.03.001

    Article  Google Scholar 

  42. Jacques D (2009) Benchmarking of the cement model and detrimental chemical reactions including temperature dependent parameters. Project near surface disposal of category A waste at Dessel, NIROND-TR Report 2008-30E, SCK.CEN, Brussels, Belgium

  43. Thiery M (2006) Modélisation de la carbonatation atmosphérique des matériaux cimentaires: prise en compte des effets cinétiques et des modifications microstructurales et hydriques ( Modelling of atmospheric carbonation of cement based materials considering the kinetic effects and modifications of the microstructure and the hydric state). Etudes et Recherche des Laboratoires des Ponts et Chaussées-Série Ouvrage d'Art, Laboratoire Central des Ponts et Chaussées (LCPC), Paris, France

  44. Suryavanshi AK, Scantlebury JD, Lyon SB (1996) Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate. Cement Concr Res 26(5):717–727. https://doi.org/10.1016/s0008-8846(96)85009-5

    Article  Google Scholar 

  45. Nguyen TQ (2007) Modélisations physico-chimiques de la pénétration des ions chlorures dans les matériaux cimentaires (Physical-chemical modelling of the penetration of chlorides into cement-based materials). Ph.D thesis, École Nationale des Ponts et Chaussées (ENPC), Paris, France

  46. Yuan Q, Shi C, De Schutter G, Audenaert K, Deng D (2009) Chloride binding of cement-based materials subjected to external chloride environment—a review. Constr Build Mater 23(1):1–13. https://doi.org/10.1016/j.conbuildmat.2008.02.004

    Article  Google Scholar 

  47. Hirao H, Yamada K, Takahashi H, Zibara H (2005) Chloride binding of cement estimated by binding isotherms of hydrates. J Adv Concr Technol 3(1):77–84. https://doi.org/10.3151/jact.3.77

    Article  Google Scholar 

  48. Tang LP, Nilsson LO (1993) Chloride binding-capacity and binding isotherms of OPC pastes and mortars. Cement Concr Res 23(2):247–253

    Article  Google Scholar 

  49. Zhou Y, Hou D, Jiang J, Liu L, She W, Yu J (2018) Experimental and molecular dynamics studies on the transport and adsorption of chloride ions in the nano-pores of calcium silicate phase: the influence of calcium to silicate ratios. Microporous Mesoporous Mater 255:23–35. https://doi.org/10.1016/j.micromeso.2017.07.024

    Article  Google Scholar 

  50. De Weerdt K, Colombo A, Coppola L, Justnes H, Geiker MR (2015) Impact of the associated cation on chloride binding of Portland cement paste. Cement Concr Res 68:196–202. https://doi.org/10.1016/j.cemconres.2014.01.027

    Article  Google Scholar 

  51. Tritthart J (1989) Chloride binding in cement II. The influence of the hydroxide concentration in the pore solution of hardened cement paste on chloride binding. Cement Concr Res 19(5):683–691. https://doi.org/10.1016/0008-8846(89)90039-2

    Article  Google Scholar 

  52. Sasaki K, Saeki T (2006) Chloride binding capacity of calcium silicate hydrate. In: the 6th international symposium on cement & concrete and canmet/aci international symposium on concrete technology for sustainable development. pp. 518–523

  53. Zhou Y, Hou D, Jiang J, Wang P (2016) Chloride ions transport and adsorption in the nano-pores of silicate calcium hydrate: experimental and molecular dynamics studies. Constr Build Mater 126:991–1001. https://doi.org/10.1016/j.conbuildmat.2016.09.110

    Article  Google Scholar 

  54. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  55. Mainguy M, Coussy O, Baroghel-Bouny V (2001) Role of air pressure in drying of weakly permeable materials. J Eng Mech 127(6):582–592. https://doi.org/10.1061/(asce)0733-9399(2001)127:6(582)

    Article  Google Scholar 

  56. Dangla P, Dridi W (2009) Rebar corrosion in carbonated concrete exposed to variable humidity conditions. Interpret Tuutti’s Curve Corros Sci 51(8):1747–1756. https://doi.org/10.1016/j.corsci.2009.04.029

    Article  Google Scholar 

  57. Dangla P (2018) A Modeling Platform Based on Finite Volume/Element Method. https://github.com/ifsttar/bil

  58. Li K, Pang X, Dangla P (2016) Thermo–hydro-ionic transport in sea immersed tube tunnel. Tunn Undergr Space Technol 58:147–158. https://doi.org/10.1016/j.tust.2016.05.004

    Article  Google Scholar 

  59. Baroghel-Bouny V, Mainguy M, Lassabatere T, Coussy O (1999) Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials. Cement Concr Res 29(8):1225–1238

    Article  Google Scholar 

  60. Meira GR, Andrade C, Alonso C, Borba JC, Padilha M (2010) Durability of concrete structures in marine atmosphere zones—the use of chloride deposition rate on the wet candle as an environmental indicator. Cement Concr Compos 32(6):427–435. https://doi.org/10.1016/j.cemconcomp.2010.03.002

    Article  Google Scholar 

  61. Mounanga P, Khelidj A, Loukili A, Baroghel-Bouny V (2004) Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach. Cement Concr Res 34(2):255–265. https://doi.org/10.1016/j.cemconres.2003.07.006

    Article  Google Scholar 

  62. Ann KY, Song HW (2007) Chloride threshold level for corrosion of steel in concrete. Corros Sci 49(11):4113–4133

    Article  Google Scholar 

  63. Juenger MCG, Siddique R (2015) Recent advances in understanding the role of supplementary cementitious materials in concrete. Cement Concr Res 78:71–80. https://doi.org/10.1016/j.cemconres.2015.03.018

    Article  Google Scholar 

  64. Sun GK, Young JF, Kirkpatrick RJ (2006) The role of Al in C–S–H: NMR, XRD, and compositional results for precipitated samples. Cement Concr Res 36(1):18–29. https://doi.org/10.1016/j.cemconres.2005.03.002

    Article  Google Scholar 

  65. Lothenbach B, Scrivener K, Hooton RD (2011) Supplementary cementitious materials. Cement Concr Res 41(12):1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001

    Article  Google Scholar 

  66. Florea MVA, Brouwers HJH (2014) Modelling of chloride binding related to hydration products in slag-blended cements. Constr Build Mater 64:421–430. https://doi.org/10.1016/j.conbuildmat.2014.04.038

    Article  Google Scholar 

  67. Thomas MDA, Hooton RD, Scott A, Zibara H (2012) The effect of supplementary cementitious materials on chloride binding in hardened cement paste. Cement Concr Res 42(1):1–7. https://doi.org/10.1016/j.cemconres.2011.01.001

    Article  Google Scholar 

  68. DuraCrete (2000) Probabilistic performance based durability design of concrete structures. The European Union–Brite EuRam III, final technical report of Duracrete project, Document BE95-1347/R17, The Netherlands

  69. Thiery M, Dangla P, Belin P, Habert G, Roussel N (2013) Carbonation kinetics of a bed of recycled concrete aggregates: a laboratory study on model materials. Cement Concr Res 46:50–65. https://doi.org/10.1016/j.cemconres.2013.01.005

    Article  Google Scholar 

  70. Papadakis VG, Vayenas CG, Fardis MN (1991) Physical and chemical characteristics affecting the durability of concrete. Aci Mater J 88(2):186–196

    Google Scholar 

  71. Carman PC (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150–166

    Google Scholar 

  72. Yokozeki K, Watanabe K, Sakata N, Otsuki N (2004) Modeling of leaching from cementitious materials used in underground environment. Appl Clay Sci 26(1–4):293–308. https://doi.org/10.1016/j.clay.2003.12.027

    Article  Google Scholar 

  73. Garboczi EJ, Bentz DP (1992) Computer simulation of the diffusivity of cement-based materials. J Mater Sci 27(8):2083–2092. https://doi.org/10.1007/bf01117921

    Article  Google Scholar 

Download references

Funding

This study was funded by NSFC Grant No. 51778332 and CSC scholarship (201706210326). This work is also a part of Innovandi partner project 31.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39 KB)

Appendices

Appendix A: CH carbonation kinetics

Fig. 11
figure 11

The crystal of portlandite (in the centre) is coated by a precipitated calcite layer of variable thickness through which ions must diffuse to maintain the calcite precipitation

Based on the mechanism described in Fig. 11, the dissolution kinetics of portlandite was derived in [43] as,

$$ \frac{{\text{d}}}{{{\text{d}}t}}\left( {n_{{{\text{CH}}}} } \right) = \frac{{n_{{{\text{CH}}}}^{0} }}{{\tau_{{{\text{CH}}}} }}f_{{{\text{coating}}}} \ln \left( {\beta_{{{\text{CH}}}} } \right){\text{ with }}f_{{{\text{coating}}}} = \frac{{r_{{\text{p}}}^{2} }}{{1 + c\frac{{r_{{\text{p}}} }}{{r_{{\text{c}}} }}\left( {r_{{\text{c}}} - r_{{\text{p}}} } \right)}} $$
(23)

where the characteristic time \(\tau_{{{\text{CH}}}}\) is approximated to 720 s for spherical crystals of portlandite with radius of R0 = 40 μm. The geometry factors, rp and rc, are the relative radii of internal and external spheres, i.e. Rp/R0 and Rc/R0, and can be related to the molar quantities as,

$$ r_{p} = \left( {\frac{{n_{{{\text{CH}}}} }}{{n_{{{\text{CH}}}}^{0} }}} \right)^{\frac{1}{3}} , \, r_{c} = \left( {\frac{{n_{{{\text{CH}}}} }}{{n_{{{\text{CH}}}}^{0} }} + \frac{{V_{{{\text{C}}\overline{{\text{C}}} }} }}{{V_{{{\text{CH}}}} }}\left( {1 - \frac{{n_{{{\text{CH}}}} }}{{n_{{{\text{CH}}}}^{0} }}} \right)} \right)^{\frac{1}{3}} $$
(24)

The parameter \(c\) was calibrated, as 0.32 × 106, by accelerated carbonation experiment (50% CO2) on hardened cement pastes (HCP) with OPC CEM I as binder and w/c ratio of 0.45. The CH content at the surface of HCP specimens (cylindrical specimens with 4 cm in length and 3.2 cm in diameter) was measured by TGA after 14d of accelerated carbonation.

Appendix B: Supplementary relations for transport properties

2.1 Diffusion coefficients for CO2 and water vapour

The diffusion coefficients \(D_{{{\text{CO}}_{{2}} (G)}}^{e}\) and \(D_{{{\text{va}}(G)}}^{e}\) in (18) and (19) take into account the porosity and tortuosity of pore structure [69],

$$ D_{{{\text{CO}}_{{2}} ,{\text{va}}({\text{G}})}}^{e} = D_{{{\text{CO}}_{{2}} ,{\text{va}}({\text{G}})}}^{0} \phi^{2.7} \left( {1 - s_{{\text{L}}} } \right)^{4.2} $$
(25)

The term D0CO2,va refer to the specific diffusion coefficients of CO2 and water vapour in air, taking 1.6 × 10−5 m2/s for CO2 and 2.82 × 10−5 m2/s for water vapour under T = 293 K and patm = 101.325 kPa.

For cement-based materials with higher w/c ratios, between 0.5 and 0.8, Papadakis et al. [70] proposed an empirical relation for the effective diffusivity of CO2,

$$ D_{{{\text{CO}}_{{2}} (G)}}^{e} = 1.64 \times 10^{{{ - }6}} \phi_{{\text{p}}}^{1.8} \left( {1 - h} \right)^{2.2} $$
(26)

with ϕp standing for the porosity of cement paste in concretes. Both models in (25) and (26) are used in the simulations for CO2 diffusivity respectively for w/c lower and higher than 0.5.

2.2 Permeability

Carbonation will also decrease the intrinsic permeability in (20) by pore precipitation. The intrinsic permeability considers the porosity change through the following relation [71],

$$ k_{{\text{int}}} = k_{{\text{int}}}^{0} \left( {\frac{\phi }{{\phi_{0} }}} \right)^{3} \left( {\frac{{1 - \phi_{0} }}{1 - \phi }} \right)^{2} $$
(27)

with k0int and ϕ0 referring to the initial values for intrinsic permeability and porosity. The relative permeability coefficient of liquid \(k_{rl}\) is also derived from van Genuchten’s model [54], taking the following form,

$$ k_{{{\text{rl}}}} = \sqrt {s_{{\text{L}}} } \left[ {1 - \left( {1 - s_{{\text{L}}}^{b} } \right)^{1/b} } \right]^{2} $$
(28)

with the parameter b taking the same value as in (6). The dynamic viscosity of liquid water is retained for the pore solution, taking ηl = 0.1 Pas for T = 293 K.

2.3 Ionic diffusion coefficient

The ionic diffusivity model from Yokozeki et al. [72] is retained in the simulations, taking the following form,

$$ D_{i}^{e} = \frac{{1 - cv_{{{\text{ca}}}} }}{{1 - dv_{{{\text{fa}}}} }}v_{{\text{p}}} f\left( {\phi_{{\text{p}}} } \right)s_{{\text{L}}}^{\lambda } D_{i}^{0} $$
(29)

From the right side to left side, D0i represents the diffusivity of ion i in pure water (dilute solution), e.g. 2.032 × 10–9 m2/s for Cl in water under 25 °C. The function sLλ scales the pore saturation effect on the diffusivity, and the exponent λ takes 6.0 following Nguyen [45] for cement-based materials. The function f(ϕp) represents the effect of pore structure on the diffusivity, taking the following expression based on percolation theory [73],

$$ f\left( {\phi_{p} } \right) = 0.001 + 0.07\phi_{p}^{2} + 1.8\left( {\phi_{p} - 0.18} \right)^{2} \cdot {\text{H}}\left( {\phi_{p} - 0.18} \right) $$
(30)

with ϕp for capillary porosity of cement paste in concrete. So far, the diffusivity is scaled from pore solution to cement pastes. Then, the term vp refers to the volumetric fraction of cement paste in concrete, and the last term describes the tortuosity effect provided by the fine and coarse aggregates: vfa and vca refer to the volumetric fractions of fine and coarse aggregates, and c = 2.1, d = 0.65 for two tortuosity parameters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, M., Dangla, P. & Li, K. Reactive transport modelling of concurrent chloride ingress and carbonation in concrete. Mater Struct 54, 177 (2021). https://doi.org/10.1617/s11527-021-01769-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-021-01769-9

Keywords

Navigation