Skip to main content
Log in

Non-native brittle star interactions with native octocoral epizoites: an endemic benthic ctenophore in peril?

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Widespread and large populations of the non-native eastern Pacific ophiuroid brittle star Ophiothela mirabilis now occur in southeastern Florida, extending the range of this recently introduced species from southern Brazil northward to the eastern Caribbean Sea and Florida. The Florida brittle stars, representing two lineages, are epibionts on shallow (3–18 m depth), tropical/subtropical plexaurid (e.g., Eunicea spp., Muricea spp.) and gorgoniid (Antillogorgia spp.) octocorals. The scope of this study includes recent distributional records of O. mirabilis in south Florida, field abundances in relation to the cohabiting endemic ctenophore Coeloplana waltoni, behavioral observations of the ophiuroid, ctenophore and the predatory amphipod Caprella penantis, as well as a laboratory experiment testing the effects of the non-native ophiuroid on the native ctenophore. Individuals of O. mirabilis have been collected near St. Lucie Inlet, extending its northern-most range by about 110 km since 2019. Two years of field sampling have demonstrated significant declines of the native, benthic ctenophore with increasing abundances of the non-native ophiuroid. Evidence suggests that the ophiuroid is negatively affecting the abundances of the ctenophore through interference competition, greatly aided by its abrasive armature of calcareous spines, plates and hooks. This detrimental effect justifies considering O. mirabilis as an invasive species in south Florida. Sporadic and intense predation by a caprellid amphipod also probably contributes to the ctenophore’s decline, but to a lesser extent than that caused by the ophiuroid. Adding to the risk of extinction of C. waltoni is its narrow requirement of living octocorals as hosts and restricted distribution in southeast Florida and the Bahamas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Alitto RAS, Granadier G, Christensen AB, O’Hara T, Domenico MD, Borges M (2020) Unravelling the taxonomic identity of Ophiothela Verrill, 1867 (Ophiuroidea) along the Brazilian coast. J Mar Biol Assoc UK. https://doi.org/10.1017/S002531542000034X

    Article  Google Scholar 

  • Anton A, Geraldi NR, Lovelock CE et al (2019) Global ecological impacts of marine exotic species. Nat Ecol Evol 3:787–800. https://doi.org/10.1038/s41559-019-0851-0

    Article  PubMed  Google Scholar 

  • de Araújo JT, Soares MO, Matthews-Cascon H, Monteiro FAC (2018) The invasive brittle star Ophiothela mirabilis Verrill, 1867 (Echinodermata, Ophiuroidea) in the southwestern Atlantic: filling gaps of distribution, with comments on an octocoral host. Lat Am J Aquat Res 46(5):1123–1127. https://doi.org/10.3856/vol46-issue5-fulltext-25

    Article  Google Scholar 

  • Bartier PM, Keller CP (1996) Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput Geosci 22(7):795–799. https://doi.org/10.1016/0098-3004(96)00021-0

    Article  CAS  Google Scholar 

  • Bavestrello G, Cerrano C, Cattaneo-Vietti R, Sarà M (1996) Relations between Eudendrium glomeratum (Cnidaria, Hydromedusae) and its associated vagile fauna. Sci Mar 60(1):137–143

    Google Scholar 

  • Bayer FM (1961) The shallow-water Octocorallia of the West Indian region, A manual for marine biologists. Studies on the fauna of Curaçao and other Caribbean islands. Martinus Nijhoff, The Hague, pp 1–373

    Google Scholar 

  • Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Maechler M, Bolker BM (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal 9(2):378–400

    Article  Google Scholar 

  • Buhl-Mortensen L, Vanreusel A, Gooday AJ, Levin LA, Priede IG, Buhl-Mortensen P, Gheerardyn H, King NJ, Raes M (2010) Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar Ecol 31:21–50. https://doi.org/10.1111/j.1439-0485.2010.00359.x

    Article  Google Scholar 

  • Bumbeer J, Rocha RM (2016) Invading the natural marine substrates: a case study with invertebrates in South Brazil. Zoologia (Curitiba) 33(3):e20150211. https://doi.org/10.1590/S1984-4689zool-20150211

    Article  Google Scholar 

  • Cabezas MP, Cabezas P, Marchordom A, Guerra-García JM (2013) Hidden diversity and cryptic speciation refute cosmopolitan distribution in Caprella penantis (Crustacea: Amphipoda: Caprellidae). J Zool Syst Evol Res 51(2):85–99

    Article  Google Scholar 

  • Caine EA (1974) Comparative functional morphology of feeding in three species of caprellids (Crustacea, Amphipoda) from the northwestern Florida Gulf Coast. J Exp Mar Biol Ecol 15:81–96

    Article  Google Scholar 

  • Caine EA (1977) Feeding mechanisms and possible resource partitioning of the Caprellidae (Crustacea: Amphipoda) from Puget Sound USA. Mar Biol 42:331–336

    Article  Google Scholar 

  • Calder DR (2013) Some shallow-water hydroids (Cnidaria: Hydrozoa) from the central east coast of Florida, USA. Zootaxa 3648(1):001–072. https://doi.org/10.11646/zootaxa.3648.1.1

    Article  Google Scholar 

  • Capel KCC, López C, Moltó-Martín I, Zilberberg C, Creed JC, Knapp ISS, Hernández M, Forsman ZH, Toonen RJ, Kitahara MV (2020) Atlantia, a new genus of Dendrophylliidae (Cnidaria, Anthozoa, Scleractinia) from the eastern Atlantic. PeerJ 8:e8633. https://doi.org/10.7717/peerj.8633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Costello MJ, Tsai P, Wong PS, Cheung AKL, Basher Z, Chaudhary C (2017) Marine biogeographic realms and species endemicity. Nat Commun 8:1057. https://doi.org/10.1038/s41467-017-01121-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Creed JC, Fenner D, Sammarco P, Cairns S, Cupel K, Junqueira AOR, Cruz I, Miranda RJ, Carlos-Junior L, Mantelatto MC, Digman-Pszczo S (2017) The invasion of the azooxanthellate coral Tubastraea (Scleractinia: Dendrophylliidae) throughout the world: history, pathways and vectors. Bio Invasions 19(1):283–305. https://doi.org/10.1007/s10530-016-1279-y

    Article  Google Scholar 

  • Derviche P, Saucsen A, Spier D, Lana P (2021) Distribution patterns and habitat suitability of the non-native brittle star Ophiothela mirabilis Verrill, 1867 along the western Atlantic. J Sea Res. https://doi.org/10.1016/j.seares.2019.101767

    Article  Google Scholar 

  • De Paula AF, Creed JC (2004) Two species of the coral Tubastraea (Cnidaria, Scleractinia) in Brazil: a case of accidental introduction. Bull Mar Sci 74:175–183

    Google Scholar 

  • Fenner D (2001) Biogeography of three Caribbean corals (Scleractinia) and the invasion of Tubastraea coccinea into the Gulf of Mexico. Bull Mar Sci 69:1175–1189

    Google Scholar 

  • Fenner D, Banks K (2004) Orange cup coral Tubastraea coccinea invades Florida and the Flower Garden Banks, northwestern Gulf of Mexico. Coral Reefs 23:505–507

    Google Scholar 

  • Ferry R, Hubert L, Philippot V, Priam F, Smith J (2020) First record of the non-indigenous brittle star species Ophiothela mirabilis Verrill, 1867 (Echinodermata: Ophiuroidea), off Martinique Island, French Lesser Antilles. Bioinvasions Rec 9(2):228–238

    Article  Google Scholar 

  • Fortunato HFM, Lôbo-Hajdu G (2021) Quantification of the non-indigenous ophiuroid Ophiothela mirabilis Verrill, 1867 associated with marine sponges with different morphologies. Aquat Invasions 16(1):77–93. https://doi.org/10.3391/ai.2021.16.1.06

    Article  Google Scholar 

  • Glynn PW, Bayer FM, Renegar DA (2014) Coeloplana waltoni, a new species of minute benthic ctenophore (Ctenophora: Platyctenida) from south Florida. Proc Biol Soc Wash 127:423–436

    Article  Google Scholar 

  • Glynn PW, Coffman B, Fuller MPC, Moorhead SG, Williams MK, Primov KD, Fortson TN, Barrales RN, Glynn PJ (2017) Benthic ctenophores (Platyctenida: Coeloplanidae) in south Florida: environmental conditions, habitats, abundances, and behaviors. Invert Biol 136(4):379–393. https://doi.org/10.1111/ivb.12189

    Article  Google Scholar 

  • Glynn PW, Coffman B, Primov KD, Moorhead SG, Vanderwoude J, Barrales RN, Williams MK, Roemer RP (2018a) Benthic ctenophores (Platyctenida: Coeloplanidae) in South Florida: predator-prey interactions. Invert Biol 137(2):133–150

    Article  Google Scholar 

  • Glynn PW, Coffman B, Vanderwoude J, Martinez N, Dominguez JH, Gross JM, Renegar DA (2018b) Antipredatory escape behaviors of two benthic ctenophores in South Florida. Ecology. https://doi.org/10.1002/ecy.2497

    Article  PubMed  Google Scholar 

  • Glynn PW, Coffman B, Primov K, Renegar DA, Gross J, Blackwelder P, Martinez N, Dominguez J, Vanderwoude J, Riegl BM (2019) Benthic ctenophore (Order Platyctenida) reproduction, recruitment, and seasonality in south Florida. Invert Biol 138:e12256

  • Glynn PW, Alitto R, Dominguez J, Christensen AB, Gillette P, Martinez N, Riegl BM, Dettloff K (2020) A tropical eastern Pacific invasive brittle star species (Echinodermata: Ophiuroidea) reaches southeastern Florida. Adv Mar Biol 87:443–472. https://doi.org/10.1016/bs.amb.2020.08.010

    Article  PubMed  Google Scholar 

  • Glynn PW, Gillette PR, Dettloff K, Dominguez J, Martinez N, Gross J, Riegl BM (2021) Experimental evidence of minimal effects on octocoral hosts caused by the introduced ophiuroid Ophiothela mirabilis. Coral Reefs 40:323–334. https://doi.org/10.1007/s00338-021-02067-0

    Article  Google Scholar 

  • Goh NKC, Ng PKL, Chou LM (1999) Notes on the shallow water gorgonian-associated fauna on coral reefs in Singapore. Bull Mar Sci 65(1):259–282

    Google Scholar 

  • Gotto RV (1969) Marine animals: partnerships and other associations. American Elsevier, New York

    Google Scholar 

  • Granja-Fernández R, Herrero-Pérezrul MD, López-Pérez RA, Hernández L, Rodríguez-Zaragoza FA, Jones RW, Pineda-López R (2014) Ophiuroidea (Echinodermata) from coral reefs in the Mexican Pacific. Zookeys 406:101–145

    Article  Google Scholar 

  • Guerra-García JM, Tierno de Figueroa JM (2009) What do caprellids (Crustacea: Amphipoda) feed on? Mar Biol 156:1881–1890

    Article  Google Scholar 

  • Guilhem IF, Masi BP, Creed JC (2020) Impact of invasive Tubastraea spp. (Cnidaria: Anthozoa) on the growth of the space dominating tropical rocky-shore zoantharian Palythoa caribaeorum (Duchassaing and Michelotti 1860). Aquat Invasions 15(1):98–113. https://doi.org/10.3391/ai.2020.15.1.07

    Article  Google Scholar 

  • Harvell CD, Fenical W (1989) Chemical and structural defenses of Caribbean gorgonians (Pseudopterogorgia spp.): intracolony localization of defense. Limnol Oceanogr 34(2):382–389

    Article  Google Scholar 

  • Hendler G, Brugneaux SJ (2013) New records of brittle stars from French Guiana: Ophiactis savignyi and the alien species Ophiothela mirabilis (Echinodermata: Ophiuroidea). Mar Biodivers Rec 6:e113. https://doi.org/10.1017/s1755267213000845

    Article  Google Scholar 

  • Hendler G, Migotto AE, Ventura CRR, Wilk L (2012) Epizoic Ophiothela brittle stars have invaded the Atlantic. Coral Reefs 31:1005. https://doi.org/10.1007/s00338-012-0936-6

    Article  Google Scholar 

  • Hixon MA, Green SJ, Albins MA, Akins JL, Morris JA Jr (2016) Lionfish: a major marine invasion. Mar Ecol Prog Ser 558:161–165. https://doi.org/10.3354/meps11909

    Article  Google Scholar 

  • Hubbard DK, Rogers CS, Lipps JH, Stanley GD Jr (2016) Coral reefs at the crossroads, vol 6. Coral Reefs of the World. Springer, New York, p 300

    Book  Google Scholar 

  • Hughes TP, Anderson KD, Connelly SR, Heron SF, Kerry JT, Lough JM, Baird AH et al (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359(6371):80–83

    Article  CAS  Google Scholar 

  • Johnston MW, Purkis SJ (2015) A coordinated and sustained international strategy is required to turn the tide on the Atlantic lionfish invasion. Mar Ecol Prog Ser 533:219–235. https://doi.org/10.3354/meps11399

    Article  Google Scholar 

  • Jones NP, Figueiredo J, Gilliam DS (2020) Thermal stress-related spatiotemporal variations in high-latitude coral reef benthic communities. Coral Reefs 3:1661–1673. https://doi.org/10.1007/s00338-020-01994-8

    Article  Google Scholar 

  • Katsanevais S, Wallentinus I, Zenetos A, Leppäkosi E, Çinar ME, Oztürk B, Grabowksi M, Golani D, Cardoso AC (2014) Impacts of invasive alien marine species on ecosystem services and biodiversity: a pan-European review. Aquat Invasions 9(4):391–423

    Article  Google Scholar 

  • Lages BG, Fleury BG, Menegola C, Creed JC (2011) Change in tropical rocky shore communities due to an alien coral invasion. Mar Ecol Prog Ser 438:85–96. https://doi.org/10.3354/meps09290

    Article  Google Scholar 

  • Lamouroux JVF (1821) Exposition méthodique des genres de l’ordre des polypiers avec leur description et celles des principales espèces, figures dans 84 planches; les 63 premières appurtenant a l’Histoire Naturelle des Zoophytes d’Ellis et Solander chez Mme Veuve Agasse, Paris, pp 115

  • Lasker HR (1981) A comparison of the particulate feeding abilities of three species of gorgonian soft coral. Mar Ecol Prog Ser 5:61–67

    Article  Google Scholar 

  • Lawley JW, Fonseca AC, Faria Júnior E, Lindner A (2018) Occurrence of the non-indigenous brittle star Ophiothela cf. mirabilis Verrill, 1867 (Echinodermata: Ophiuroida) in natural and anthropogenic habitats off Santa Catarina Brazil. Check List 14:453–459. https://doi.org/10.15560/14.2.453

    Article  Google Scholar 

  • López C, Clemente S, Moreno S, Ocaña O, Herrera R, Moro L, Monterroso O, Rodríguez A, Brito A (2019) Invasive Tubastraea spp. and Oculina patagonica and other introduced scleractinian corals in the Santa Cruz de Tenerife (Canary Islands) harbour: ecology and potential risks. Regional Stud Mar Sci. https://doi.org/10.1016/j.rsma.2019.100713

    Article  Google Scholar 

  • Luz BLP, Kitahara MV (2017) Could the invasive scleractinians Tubastraea coccinea and T tagusensis replace the dominant zoantharian Palythoa caribaeorum in the Brazilian subtidal. Coral Reefs. https://doi.org/10.1007/s00338-017-1578-5

    Article  Google Scholar 

  • Madin JS, Madin EMP (2015) The full extent of the global coral reef crisis. Conserv Biol 29:1724–1726

    Article  Google Scholar 

  • Maggioni D, Montano S, Voigt O, Seveso D, Galli P (2020) A mesophotic hotel: the octocoral Bebryce cf. grandicalyx as a host. Ecology. https://doi.org/10.1002/ecy.2950

    Article  PubMed  Google Scholar 

  • Mantelatto MC, Vidon LF, Silveira RB, Menegola C, Moreira da Rocha R, Creed JC (2016) Host species of the non-indigenous brittle star Ophiothela mirabilis (Echinodermata: Ophiuroidea): an invasive generalist in Brazil? Mar Biodivers Rec 9:8. https://doi.org/10.1186/s41200-016-0013-x

    Article  Google Scholar 

  • McCauley M, Jackson CR, Goulet TL (2020) Microbiomes of Caribbean octocorals vary over time but are resistant to environmental change. Front Microbiol 11:1272. https://doi.org/10.3389/fmicb.2020.01272

    Article  PubMed  PubMed Central  Google Scholar 

  • Milne Edwards H, Haime J (1857) Histoire naturelle des coralliaires ou polypes proprement dits 2. Librairie Encyclopedique de Roret, Paris. pp 631

  • Miranda RJ, Cruz ICS, Barros F (2016) Effects of the alien coral Tubastraea tagusensis on native coral assemblages in a southwestern Atlantic coral reef. Mar Biol 163:45. https://doi.org/10.1007/s00227-016-2819-9

    Article  CAS  Google Scholar 

  • Nutting CC (1900) American hydroids. Part I. The Plumularidae. Smith. Inst., U.S. Nat. Mus. Spec. Bull. 4(1):1–285

  • Pallas PS (1766) Elenchus zoophytorum sistens generum adumbrations generaliores et specierum cognitarum succintas descriptones, cum selectis auctorum synonymis. Fransiscum Varrentrapp, Hagae. pp 451. https://doi.org/10.5962/bhl.title.6595

  • Pawlik JR, Burch MT, Fenical W (1987) Patterns of chemical defense among Caribbean gorgonian corals: a preliminary survey. J Exp Mar Biol Ecol 108:55–66

    Article  Google Scholar 

  • Paz-Ríos CE, Guerra-García JM, Ardisson P-L (2014) Caprellids (Crustacea: Amphipoda) from the Gulf of Mexico, with observations on Deutella mayeri, redescription of Metaprotella hummelincki, a taxonomic key and zoogeographical comments. J Nat Hist 48(41–42):2517–2578

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York

    Book  Google Scholar 

  • Puce S, Di Camillo CG, Bavestrello G (2008) Hydroids symbiotic with octocorals from the Sulawesi Sea, Indonesia. J Mar Biol Ass U K 88(08):1643–1654

    Article  Google Scholar 

  • Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, Carlton JT, Dawson W, Essl F, Foxcroft LC, Genovesi P et al (2020) Scientists’ warning on invasive alien species. Biol Rev. https://doi.org/10.1111/brv.12627

    Article  PubMed  Google Scholar 

  • Sammarco PW, Porter SA, Genazzio M, Sinclair J (2015) Success in competition for space in two invasive coral species in the western Atlantic—Tubastraea micranthus and T. coccinea. PLoS ONE. https://doi.org/10.1371/journal.pone.0144581

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez JA (2016) Diversity and evolution of octocoral animal forests at both sides of tropical America. In: Rossi S (ed) Marine Animal Forests. Springer, New York

    Google Scholar 

  • Sánchez JA, Wirshing HH (2005) A field key to the identification of tropical Western Atlantic zooxanthellate octocorals (Octocorallia: Cnidaria). Carib J Sci 41:508–522

    Google Scholar 

  • Sano M, Omori M, Taniguchi K (2003) Predator-prey systems of drifting seaweed communities off the Tohoku coast, northern Japan, as determined by feeding habitat analysis of phytal animals. Fish Sci 69:260–268. https://doi.org/10.1046/j.1444-2906.2003.00616.x

    Article  CAS  Google Scholar 

  • Saunders CG (1966) Dietary analysis of caprellids (Amphipoda). Crustaceana 10:314–316

    Article  Google Scholar 

  • Sax DF, Gaines SD (2008) Species invasions and extinctions: the future of native biodiversity on islands. Proc Nat Acad Sci 105:11490–11497. https://doi.org/10.1073/pnas.0802290105

    Article  PubMed  PubMed Central  Google Scholar 

  • Scinto A, Bavastrello G, Boyer M, Previati M, Cerrano C (2008) Gorgonian mortality related to a massive attack by caprellids in the Bunaken Marine Park (North Sulawesi Indonesia). J Mar Biol Assoc UK. https://doi.org/10.1017/S002531540800129X

    Article  Google Scholar 

  • Seebens H, Blackburn T, Dyer E, Genovesi P, Hulme PE, Jeschke JM, Page S et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435. https://doi.org/10.1038/ncomms14435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silva AG, Figueira de Paula A, Fleury BG, Creed JC (2014) Eleven years of range expansion of two invasive corals (Tubastraea coccinea and Tubastraea tagusensis) through southwest Atlantic (Brazil). Estuar Coast Shelf S 141(2014):9–16. https://doi.org/10.1016/j.ecss.2014.01.013

    Article  Google Scholar 

  • Tavares MR, Franco ACS, Ventura CRR, Santos LN (2021) Geographic distribution of Ophiothela brittle stars (Echinodermata: Ophiuroidea): substrate use plasticity and implications for the silent invasion of O. mirabilis in the Atlantic. Hydrobiologia. https://doi.org/10.1007/s10750-020-04505-6

    Article  Google Scholar 

  • Van Oppen MJH, Mieog JC, Sánchez CA, Fabricius KE (2005) Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships. Mol Ecol 14(8):2403–2417. https://doi.org/10.1111/j.1365-294X.2005.0254.x

    Article  PubMed  Google Scholar 

  • Verrill AE (1867) Note on the Radiata in the Museum of Yale College with descriptions of new genera and species. Notes on the echinoderms of Panama and the west coast of America with descriptions of new genera and species. Trans Connecticut Acad Arts Sci 1(2):251–322

    Google Scholar 

  • Willis TJ, Berglöf KTL, McGill RAR, Musco L, Piraino S, Rumsey CM, Fernández TV, Badalamenti F (2017) Kleptopredation: a mechanism to facilitate planktivory in a benthic mollusc. Biol Let 13:20170447. https://doi.org/10.1098/rsbl.2017.0447

    Article  Google Scholar 

  • Yoffe C, Lotan T, Benayhau Y (2012) A modified view on octocorals: Heteroxenia fuscescens nematocysts are diverse, featuring both an ancestral and a novel type. PLoS ONE. https://doi.org/10.1371/journal.pone.0031902

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks are due W. L. Bullock (Landis), B. Enright, R. L. Ionata, and the South Florida Beach Divers Meetup Group for help with obtaining collections, and to Markus Niemeyer for the report and specific location data on O. mirabilis at Blue Heron Bridge. A special thanks to Julie Gross for sundry laboratory tasks and enlightening discussions. R. C. Brusca, D. Cadien, D. Drumm, and Lea–Anne Henry offered literature sources, helpful discussions, and contacts with systematists for species identifications. J. M. Guerra–García kindly identified Caprella penantis, and Dale R. Calder a hydrozoan. We are grateful for the details on the Bunaken caprellid infestations provided by Carlo Cerrano. The Ophiothela collection at Blue Heron Bridge was under FWC Special Activity License SAL-20-2267-SR.

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

PWG conceived study, processed samples, recorded behavioral observations, and prepared the manuscript. BMR assisted in field collections, processing samples, and manuscript preparation. BC performed the laboratory experiment. KD designed and completed all statistical analyses. JD, NM, and PRG performed field collections, observations, and processed samples. PRG collected specimens at Blue Heron Bridge, Riviera Beach, and performed all photographic documentation. Quantitative field collections were performed by NJ. All authors contributed intellectually to this study.

Corresponding author

Correspondence to Bernhard M. Riegl.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Experiments and observations involving the invertebrates were approved by the IACUC committees at UM and NSU. The Ophiothela collection at Blue Heron Bridge was under FWC Special Activity License SAL-20–2267-SR.

Additional information

Responsible Editor: R. Cuthbert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by: undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glynn, P.W., Coffman, B., Dettloff, K. et al. Non-native brittle star interactions with native octocoral epizoites: an endemic benthic ctenophore in peril?. Mar Biol 168, 142 (2021). https://doi.org/10.1007/s00227-021-03927-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-021-03927-7

Navigation