Skip to main content
Log in

Psychotropic and Neuroreceptor Effects of Cyclopropylglycine Upon Intranasal Administration

  • DRUGS
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The effects of chronic intranasal administration of cycloprolylglycine (CPG, 1 and 2 mg/kg) on the behavior of BALB/c and C57BL/6 mice and the brain neuroreceptor characteristics in BALB/c mice were studied. Intranasal administration of CPG (1 and 2 mg/kg, 2 weeks) to BALB/c mice in the Porsolt test resulted in a significant antidepressant-like effect more potent than that from intraperitoneal administration of CPG. At the same time, intranasal administration of CPG to C57BL/6 mice in the tail-suspension test was the same as that upon intraperitoneal administration and led to a moderate antidepressant-like effect (1 mg/kg, 4 weeks). Intranasal CPG did not produce any effect on anxiety or exploratory activity in the closed cross-maze test. Radioligand analyses showed an increased density of GABAA receptors in the PFC (1 mg/kg) and reduced density of NMDAand 5HT2A receptors in the hippocampus and striatum, respectively, after intranasal administration of CPG (1 and 2 mg/kg) for two weeks while not affecting mGluII receptor binding in the hippocampus. The significant difference in hippocampal NMDA binding between the two routes may indicate that this receptor is involved in the mechanism of the antidepressant-like effect of CPG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T. A. Gudasheva, S. S. Boyko, V. Kh. Akparov, et al., FEBS Lett., 391, 149 – 152 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. J. Guan, P. Harris, M. Brimble, et al., Expert Opin. Ther. Targets, 19(6), 785 – 793 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. T. A. Gudasheva, M. A. Konstantinopol’skii, R. U. Ostrovskaya, et al., Byull. Eksp. Biol. Med., 131(5), 547 – 550 (2001).

    Article  Google Scholar 

  4. T. A. Gudasheva, R. U. Ostrovskaya, S. S. Trofimov, et al., Byull. Eksp. Biol. Med., 128(10), 411 – 413 (1999).

    CAS  Google Scholar 

  5. K. N. Kolyasnikova, T. A. Gudasheva, G. A. Nazarova, et al., Eksp. Klin. Farmakol., 75(9), 3 – 6 (2012).

    CAS  Google Scholar 

  6. T. A. Gudasheva, V. V. Grigor’ev, K. N. Kolyasnikova, et al., Dokl. Akad. Nauk, 471(1), 106 – 108 (2016).

    Google Scholar 

  7. T. A. Gudasheva, K. N. Kolyasnikova, T. A. Antipova, et al., Dokl. Akad. Nauk, 469(4), 492 – 495 (2016).

    Google Scholar 

  8. E. V. Vasil’eva, A. A. Abdullina, E. A. Kondrakhin, et al., Eur. Neuropsychopharmacol., 29(S1), s511-s512 (2019).

    Article  Google Scholar 

  9. E. V. Vasil’eva, R. M. Salmov, and G. I. Kovalev, Farmakokinet. Farmakodin., No. 2, 31 – 36 (2016).

  10. G. I. Kovalev, E. V. Vasil’eva, and R. M. Salimov, Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 69(1), 123 – 130 (2019).

    Google Scholar 

  11. A. N. Mironov, Handbook for Preclinical Drug Trials [in Russian], Part 1, Grif i K, Moscow (2012).

    Google Scholar 

  12. R. M. Salimov, Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 38(3), 569 – 571 (1988).

    CAS  Google Scholar 

  13. N. G. Bowery, D. R. Hill, and A. L. Hudson, Neuropharmacology, 24(3), 207 – 210 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. J. E. Hawkinson, M. Acosta-Burruel, C. L. Kimbrought, et al., Eur. J. Pharmacol., 304, 141 – 146 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Y. Ito, D. Koo Lim, Y. Hayase, et al., Neurochem. Res., 4, 307 – 313 (1992).

    Article  Google Scholar 

  16. K. T. LaPage, J. E. Ishmael, C. W. Low, et al., Neuropharmacology, 49, 1 – 16 (2005).

    Article  CAS  Google Scholar 

  17. J. E. Leysen and C. J. Niemegeers, Mol. Pharmacol., 21(2), 301 – 314 (1982).

    CAS  PubMed  Google Scholar 

  18. H. Schaffhauser, J. G. Richards, J. Cartmell, et al., Mol. Pharmacol., 53, 228 – 233 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. A. M. Szekely, M. L. Barbaccia, and E. Costa, J. Pharmacol. Exp. Ther., 243(1), 155 – 159 (1987).

    CAS  PubMed  Google Scholar 

  20. L. M. Zhou, Z. Q. Gu, A. M. Costa, et al., J. Pharmacol. Exp. Ther., 280(1), 422 – 427 (1997).

    CAS  PubMed  Google Scholar 

  21. I. G. Kovalev, E. V. Vasil’eva, E. A. Kondrakhin, et al., Neirokhimiya, 4, 1 – 10 (2017).

    Google Scholar 

  22. Yu. Yu. Firstova, E. V. Vasil’eva, and G. I. Kovalev, Farmakokinet. Farmakodin., No. 3, 42 – 47 (2018).

  23. E. V. Vasil’eva, R. M. Salimov, and G. I. Kovalev, Eksp. Klin. Farmakol., 75(7), 32 – 37 (2012).

    PubMed  Google Scholar 

  24. E. V. Vasil’eva, A. A. Abdullina, and G. I. Kovalev, in: Proceedings of the Russian Scientific Conference “Pharmacology of Regulatory Neuropeptides” [in Russian], St. Petersburg (2017), pp. 10 – 11.

  25. H. Shoji and T. Miyakawa, Mol. Brain, 12, 70 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. S. Farley, S. Dumas, S. El Mestikawy, et al., Neuropharmacology, 62(1), 503 – 517 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. H. Ito, M. Nagano, H. Suzuki, et al., Neuropharmacology, 58, 746 – 757 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. G. I. Kovalev, E. A. Kondrakhin, and R. M. Salimov, Neirokhimiya, 30(2), 128 – 134 (2013).

    Google Scholar 

  29. E. V. Vasil’eva, Author’s Abstract of a Candidate Dissertation in Biological Sciences, Moscow (2013).

  30. C. A. Browne, G. Clarke, T. G. Dinan, et al., Neuropharmacology, 60(4), 683 – 691 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. C. M. O’Mahony, F. F. Sweeney, E. Daly, et al., Behav. Brain Res., 213(2), 148 – 154 (2010).

    Article  PubMed  Google Scholar 

  32. A. M. Privalova, T. V. Bukreeva, and N. V. Gulyaeva, Neurochem. J., 6(2), 77 – 88 (2012).

    Article  CAS  Google Scholar 

  33. S. S. Boiko, K. N. Kolyasnikova, and V. P. Zherdev, Farmakokinet. Farmakodin., No. 3, 34 – 38 (2019).

  34. A. A. Abdullina, E. V. Vasileva, E. A. Kondrakhin, et al., Neurochem. J., 13, 249 – 255 (2019).

    Article  CAS  Google Scholar 

  35. F. Radja, L. Descarries, K. M. Dewar, et al., Brain Res., 606(2), 273 – 285 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. S. Numan, K. H. Lundgren, D. E. Wright, et al., Mol. Brain Res., 29, 391 – 396 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. A. A. Abdullina, E. V. Vasil’eva, V. S. Kudrin, et al., Farmakokinet. Farmakodin., No. 1, 3 – 10 (2020).

  38. G. Sanacora, C. A. Zarate, and J. H. Krystal, Nat. Rev. Drug Discovery, 7, 426 – 437 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. G. Sanacora, G. Treccani, and M. Popoli, Neuropharmacology, 62, 63 – 77 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. L. Musazzi, G. Racagni, and M. Popoli, Neurochem. Int., 59(2), 138 – 149 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. F. Calabrese, G. Guidotti, and R. Molteni, PLoS One, 7(5), e37916 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. P. Skolnick, P. Popik, and R. Trullas, Trends Pharmacol. Sci., 30, 563 – 569 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. G. Nowak, R. Trullas, R. T. Layer, et al., J. Pharmacol. Exp. Ther., 265, 1380 – 1386 (1993).

    CAS  PubMed  Google Scholar 

  44. B. Bobula, K. Tokarski, and G. Hess, Neuroscience, 120, 765 – 769 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. S. Ghosal, B. Hare, and R. S. Duman, Curr. Opin. Behav. Sci., 14, 1 – 8 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Q. Shen, R. Lal, B. A. Luellen, et al., Biol. Psychiatry, 68(6), 512 – 520 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. B. Luscher and T. Fuchs, Adv. Pharmacol., 73, 97 – 144 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. C. Caldji, D. Francis, S. Sharma, et al., Neuropsychopharmacology, 22(3), 219 – 229 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. C. Braestrup, M. Nielsen, E. B. Nielsen, et al., Psychopharmacology (Berlin, Ger.), 65(3), 273 – 277 (1979).

    Article  CAS  Google Scholar 

  50. G. B. Acosta, M. E. Otero Losada, and M. C. Rubio, Neurosci. Lett., 154(1–2), 175 – 178 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. K. Matsumoto, G. Puia, E. Dong, et al., Stress, 10(1), 3 – 12 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Z. Merali, L. Du, P. Hrdina, et al., J. Neurosci., 24, 1478 – 1485 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. A. Sequeira, T. Klempan, L. Canetti, et al., Mol. Psychiatry, 12, 640 – 655 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. T. A. Klempan, A. Sequeira, L. Canetti, et al., Mol. Psychiatry, 14, 175 – 189 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. B. Luscher, Q. Shen, and N. Sahir, Mol. Psychiatry, 16, 383 – 406 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was performed in the framework of State Task No. 0521-2019-0009 “Analysis of receptor mechanisms and search for CNS pharmacological protection agents with disrupted brain blood flow and cognitive disorders.

Conflict of interests. The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Abdullina.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 55, No. 5, pp. 25 – 31, May, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullina, A.A., Vasil’eva, E.V., Kondrakhin, E.A. et al. Psychotropic and Neuroreceptor Effects of Cyclopropylglycine Upon Intranasal Administration. Pharm Chem J 55, 483–489 (2021). https://doi.org/10.1007/s11094-021-02445-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-021-02445-6

Keywords

Navigation