Skip to main content
Log in

Development and characterization of a novel reference sample for tip-enhanced Raman spectroscopy

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The tip-enhanced Raman spectroscopy (TERS) is a modern technique for nano-scale analyses, which combines the excellent spatial resolution of scanning probe microscopy and the chemical sensitivity of surface-enhanced Raman scattering spectroscopy. These unique properties of TERS are achieved via the use of a plasmonic nano-tip positioned only a few nanometers away from the studied sample. However, the tips are prone to mechanical and chemical degradation, which may hinder the achieved spatial resolution and signal enhancement. Therefore, periodic checks of the state of the tip are crucial to maintaining the high quality of TERS experiments. Reference samples are commercially available for these purposes, but they are costly and have a quite short expiration date of several months. For this reason, we have developed a simple procedure for the preparation of reference probe samples for testing TERS tips using copper(II) phthalocyanine on a Au nanolayer, which is prepared by thermal vacuum evaporation of Au on a Si wafer. The analysis of the prepared system by atomic force microscopy and scanning electron microscopy confirmed a relatively smooth surface morphology, which is an important parameter for minimizing the risk of mechanical damage of the tip. TERS experiments proved that the developed system is suitable as a reference sample for TERS at the 785 nm excitation wavelength, enabling a repeated detection of well-resolved TERS spectra. The use of the reference sample for 633 nm excitation is limited because of possible photo-induced processes, which decrease the reproducibility and stability of the collected TERS spectra.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singh R (2002) Phys Perspect 4:399

    Article  Google Scholar 

  2. Shao F, Zenobi R (2019) Anal Bioanal Chem 411:37

    Article  CAS  Google Scholar 

  3. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26:163

    Article  CAS  Google Scholar 

  4. Aroca R (2006) Surface-enhanced Vibrational Spectroscopy. Wiley, Hoboken

    Book  Google Scholar 

  5. Etchegoin PG, Le Ru EC (2008) Phys Chem Chem Phys 10:6079

    Article  CAS  Google Scholar 

  6. Wessel J (1985) J Opt Soc Am B 2:1538

    Article  CAS  Google Scholar 

  7. Stöckle RM, Suh YD, Deckert V, Zenobi R (2000) Chem Phys Lett 318:131

    Article  Google Scholar 

  8. Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2000) Opt Commun 183:333

    Article  CAS  Google Scholar 

  9. Anderson M (2000) Appl Phys Lett 76:3130

    Article  CAS  Google Scholar 

  10. Pettinger B, Picardi G, Schuster R, Ertl G (2000) Electrochemistry 68:942

    Article  CAS  Google Scholar 

  11. Krayev A, Bashkirov S, Gavrilyuk V, Zhizhimontov V, Chaigneau M, Shanmugasundaram M, Robinson AE (2016) Proceedings of the SPIE 99250A. https://doi.org/10.1117/12.2237678

  12. Beams R (2018) J Raman Spectrosc 49:157

    Article  CAS  Google Scholar 

  13. Hoffmann GG, Bârsan OA, van der Ven LGJ, de With G (2017) J Raman Spectrosc 48:191

    Article  CAS  Google Scholar 

  14. He Z, Han Z, Kizer M, Linhardt RJ, Wang X, Sinyukov AM, Wang J, Deckert V, Sokolov AV, Hu J, Scully MO (2019) J Am Chem Soc 141:753

    Article  CAS  Google Scholar 

  15. Böhme R, Cialla D, Richter M, Rösch P, Popp J, Deckert V (2010) J Biophotonics 3:455

    Article  Google Scholar 

  16. Cialla D, Deckert-Gaudig T, Budich C, Laue M, Möller R, Naumann D, Deckert V, Popp J (2009) J Raman Spectrosc 40:240

    Article  CAS  Google Scholar 

  17. Kurouski D, Postiglione T, Deckert-Gaudig T, Deckert V, Lednev IK (2013) Analyst 138:1665

    Article  CAS  Google Scholar 

  18. Krasnoslobodtsev AV, Deckert-Gaudig T, Zhang Y, Deckert V, Lyubchenko YL (2016) Ultramicroscopy 165:26

    Article  CAS  Google Scholar 

  19. Bonhommeau S, Talaga D, Hunel J, Cullin C, Lecomte S (2017) Angew Chem Int Ed 56:1771

    Article  CAS  Google Scholar 

  20. Binnig G, Rohrer H (1983) Surf Sci 126:236

    Article  CAS  Google Scholar 

  21. Kumar N, Mignuzzi S, Su W, Roy D (2015) EPJ Techn Instrum 2:9

    Article  Google Scholar 

  22. Bailo E, Deckert V (2008) Chem Soc Rev 37:921

    Article  CAS  Google Scholar 

  23. Kumar N, Su W, Vesely M, Weckhuysen BM, Pollard AJ, Wain AJ (2018) Nanoscale 10:1815

    Article  CAS  Google Scholar 

  24. Dendisová M, Jeništová A, Parchaňská-Kokaislová A, Matějka P, Prokopec V, Švecová M (2018) Anal Chim Acta 1031:1

    Article  Google Scholar 

  25. Sacco A, Imbraguglio D, Giovannozzi Andrea M, Portesi C, Rossi AM (2018) RSC Adv 8:27863

    Article  CAS  Google Scholar 

  26. Bovill AJ, McConnell AA, Nimmo JA, Smith WE (1986) J Phys Chem 90:569

    Article  CAS  Google Scholar 

  27. Shaibat MA, Casabianca LB, Siberio-Pérez DY, Matzger AJ, Ishii Y (2010) J Phys Chem B 114:4400

    Article  CAS  Google Scholar 

  28. Whiteman PJ, Schultz JF, Porach ZD, Chen HN, Jiang N (2018) J Phys Chem C 122:5489

    Article  CAS  Google Scholar 

  29. Jiang S, Chen Z, Chen X, Nguyen D, Mattei M, Goubert G, Van Duyne RP (2019) J Phys Chem C 123:9852

    Article  CAS  Google Scholar 

  30. Szybowicz M, Runka T, Drozdowski M, Bała W, Grodzicki A, Piszczek P, Bratkowski A (2004) J Mol Struct 704:107

    Article  CAS  Google Scholar 

  31. Caplins BW, Mullenbach TK, Holmes RJ, Blank DA (2016) Phys Chem Chem Phys 18:11454

    Article  CAS  Google Scholar 

  32. Melendres CA, Maroni VA (1984) J Raman Spectrosc 15:319

    Article  CAS  Google Scholar 

  33. Dendisová M, Palounek D, Švecová M, Prokopec V (2019) Chem Pap 73:2945

    Article  Google Scholar 

  34. Procházka M (2016) Surface-enhanced Raman Spectroscopy. Springer, Cham

    Book  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Zdeněk Sofer from the Department of Inorganic Chemistry, UCT Prague and his team for preparing and providing the substrates used in this work. We are also grateful to Oleksandr Volochanskyi, M.Sc. from the J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences for carrying out the SEM analysis. This work was supported by the grant of Specific university research – A1_FCHI_2021_002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Král.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Král, M., Dendisová, M. & Matějka, P. Development and characterization of a novel reference sample for tip-enhanced Raman spectroscopy. Monatsh Chem 152, 1119–1125 (2021). https://doi.org/10.1007/s00706-021-02808-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02808-5

Keywords

Navigation