Skip to main content
Log in

Initial rotor position estimation by pulsating high-frequency voltage injection considering mutual inductance

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

Pulsating high-frequency voltage injection is an effective method for estimating the initial rotor position for interior permanent magnet synchronous motors (IPMSMs). This method is based on the magnetic saliency of a motor rather than a back-electromotive-force (back-EMF) model. In addition, it is feasible when the motor is static or in low-speed operations. However, accurate estimation of the rotor position is realized on the assumption that the direct-axis and quadrature-axis of the motor are completely decoupled, which is not always satisfied. Then, the mutual inductance between the two axes introduces a theoretical error into the rotor position estimation. In this paper, the theoretical error of the rotor position estimation caused by mutual inductance is deduced. An improved initial rotor position estimation method is proposed to eliminate harmonic theoretical errors by injecting high-frequency voltage in the decoupling coordinate system. Finally, the effectiveness of this method is verified by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ko, J.S., Choi, J.S., Chung, D.: Maximum torque control of an ipmsm drive using an adaptive learning fuzzy-neural network. J. Power Electron. 12(3), 468–476 (2012)

    Article  Google Scholar 

  2. Tang, Q., Shen, A., Luo, X.: IPMSM sensorless control by injecting bi-directional rotating HF carrier signals. IEEE Trans. Power Electron. (2018). https://doi.org/10.1109/TPEL.2018.2811126

    Article  Google Scholar 

  3. Bolognani, S., Calligaro, S., Petrella, R., Tursini, M.: Sensorless control of IPM motors in the low-speed range and at standstill by HF injection and DFT processing. IEEE Trans. Ind. Appl. 47(1), 96–104 (2011). https://doi.org/10.1109/TIA.2010.2090317

    Article  Google Scholar 

  4. Sun, W., Yu, Y., Wang, G., Li, B., Xu, D.: Design method of adaptive full order observer with or without estimated flux error in speed estimation algorithm. IEEE Trans. Power Electron. 31(3), 2609–2626 (2015). https://doi.org/10.1109/TPEL.2015.2440373

    Article  Google Scholar 

  5. Zhao, Y., Zhang, Z., Qiao, W., Wu, L.: An extended flux model-based rotor position estimator for sensorless control of salient-pole permanent-magnet synchronous machines. IEEE Trans. Power Electron. 30(8), 4412–4422 (2015). https://doi.org/10.1109/TPEL.2014.2358621

    Article  Google Scholar 

  6. Chen, Z., Tomita, M., Doki, S., Okuma, S.: An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors. IEEE Trans. Ind. Electron. 50(2), 288–295 (2003)

    Article  Google Scholar 

  7. Shen, J., Iwasaki, S.: Sensorless control of ultrahigh-speed PM brushless motor using PLL and third harmonic back EMF. IEEE Trans. Ind. Electron. 53(2), 421–428 (2006). https://doi.org/10.1109/TIE.2006.870664

    Article  Google Scholar 

  8. Liu, J., Zhu, Z.: Improved sensorless control of permanent-magnet synchronous machine based on third-harmonic back EMF. IEEE Trans. Ind. Appl. 50(3), 1861–1870 (2014). https://doi.org/10.1109/TIA.2013.2284299

    Article  Google Scholar 

  9. Yoon, Y., Sul, S., Morimoto, S., Ide, K.: High-bandwidth sensorless algorithm for AC machines based on square-wave-type voltage injection. IEEE Trans. Ind. Appl. 47(3), 1361–1370 (2011). https://doi.org/10.1109/TIA.2011.2126552

    Article  Google Scholar 

  10. Luo, X., Tang, Q., Shen, A., Zhang, Q.: PMSM sensorless control by injecting HF pulsating carrier signal into estimated fixed-frequency rotating reference Frame. IEEE Trans. Industr. Electron. 63(4), 2294–2303 (2016). https://doi.org/10.1109/TIE.2015.2505679

    Article  Google Scholar 

  11. Kim, S., Im, J., Song, E., Kim, R.: A new rotor position estimation method of IPMSM using all-pass filter on high-frequency rotating voltage signal injection. IEEE Trans. Industr. Electron. 63(10), 6499–6509 (2016). https://doi.org/10.1109/TIE.2016.2592464

    Article  Google Scholar 

  12. Tang, Q., Shen, A., Luo, X., Xu, J.: PMSM sensorless control by injecting HF pulsating carrier signal into ABC frame. IEEE Trans. Power Electron. 32(5), 3767–3776 (2017). https://doi.org/10.1109/TPEL.2016.2583787

    Article  Google Scholar 

  13. Zhang, X., Li, H., Yang, S., Ma, M.: Improved initial rotor position estimation for PMSM drives based on HF pulsating voltage signal injection. IEEE Trans. Industr. Electron. 65(6), 4702–4713 (2018). https://doi.org/10.1109/TIE.2017.2772204

    Article  Google Scholar 

  14. Kang, Y.-K., Jeong, H.-G., Lee, K.-B., Lee, D.-C., Kim, J.-M.: Simple estimation scheme for initial rotor position and inductances for effective MTPA-operation in wind-power systems using an IPMSM. J. Power Electron. 10(4), 396–404 (2010)

    Article  Google Scholar 

  15. Raca, D., Harke, M., Lorenz, R.: Robust magnet polarity estimation for initialization of pm synchronous machines with near-zero saliency. IEEE Trans. Ind. Appl. 44(4), 1199–1209 (2008). https://doi.org/10.1109/TIA.2008.926195

    Article  Google Scholar 

  16. Xu, P., Zhu, Z.: Initial rotor position estimation using zero-sequence carrier voltage for permanent-magnet synchronous machines. IEEE Trans. Ind. Electron. 64(1), 149–158 (2017). https://doi.org/10.1109/TIE.2016.2596703

    Article  Google Scholar 

  17. Mei, K., Ding, S.: Second-order sliding mode controller design subject to an upper-triangular structure. IEEE Trans. Syst. Man Cybern. Syst. 51(1), 497–507 (2021). https://doi.org/10.1109/TSMC.2018.2875267

    Article  Google Scholar 

  18. Wu, Y., Jiang, B., Lu, N.: A descriptor system approach for estimation of incipient faults with application to high-speed railway traction devices. IEEE Trans. Syst. Man Cybern. Syst. 49(10), 2108–2118 (2019). https://doi.org/10.1109/TSMC.2017.2757264

    Article  Google Scholar 

  19. Liu, J., Zhu, Z.: Novel sensorless control strategy with injection of high-frequency pulsating carrier signal into stationary reference frame. IEEE Trans. Ind. Appl. 50(4), 2574–2583 (2014). https://doi.org/10.1109/TIA.2013.2293000

    Article  Google Scholar 

  20. Almarhoon, A., Zhu, Z., Xu, P.: Improved rotor position estimation accuracy by rotating carrier signal injection utilizing zero-sequence carrier voltage for dual three-phase PMSM. IEEE Trans. Ind.ustrial Electron.ics. 64(6), 4454–4462 (2017). https://doi.org/10.1109/TIE.2016.2561261

    Article  Google Scholar 

  21. Guerrero, J., Leetmaa, M., Briz, F., Zamarron, A., Lorenz, R.: Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods. IEEE Trans. Ind. Appl. 41(2), 618–626 (2005). https://doi.org/10.1109/TIA.2005.844411

    Article  Google Scholar 

  22. Attaianese, C., Tomasso, G.: Predictive compensation of dead-time effects in VSI feeding induction motors. IEEE Trans. Ind. Appl. 37(3), 856–863 (2001). https://doi.org/10.1109/28.924768

    Article  Google Scholar 

  23. Kim, H., Kim, H., Youn, M.: A new on-line dead-time compensation method based on time delay control. In: IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society, pp. 1184–1189 (2001). https://doi.org/10.1109/IECON.2001.975949

  24. Wang, X., Xie, W., Dajaku, G., Kennel, R., Gerling, D., Lorenz, R.: position self-sensing evaluation of novel CW-IPMSMs with an HF injection method. IEEE Trans. Ind. Appl. 50(5), 3325–3334 (2014). https://doi.org/10.1109/TIA.2014.2311507

    Article  Google Scholar 

  25. Wang, H., Lu, K., Wang, D., Blaabjerg, F.: Simple and effective online position error compensation method for sensorless SPMSM drives. IEEE Trans. Ind. Appl. 56(2), 1475–1484 (2020). https://doi.org/10.1109/TIA.2019.2958792

    Article  Google Scholar 

  26. Guglielmi, P., Pastorelli, M., Vagati, A.: Cross-saturation effects in ipm motors and related impact on sensorless control. IEEE Trans. Ind. Appl. 42(6), 1516–1522 (2006)

    Article  Google Scholar 

  27. Li, Y., Zhu, Z., Howe, D., Bingham, C.: Modeling of cross-coupling magnetic saturation in signal-injection-based sensorless control of permanent-magnet brushless ac motors. IEEE Trans. Magn. 43(6), 2552–2554 (2007)

    Article  Google Scholar 

  28. Li, Y., Zhu, Z., Howe, D., Bingham, C., Stone, D.: Improved rotor-position estimation by signal injection in brushless ac motors, accounting for cross-coupling magnetic saturation. IEEE Trans. Ind. Appl. 45(5), 1843–1850 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Plan of China under Grant 2017YFB0103200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongshu Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Z., Shao, Z. & Zhou, S. Initial rotor position estimation by pulsating high-frequency voltage injection considering mutual inductance. J. Power Electron. 21, 1484–1492 (2021). https://doi.org/10.1007/s43236-021-00298-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-021-00298-6

Keywords

Navigation