Skip to main content
Log in

Alterations in functional network centrality in first-episode drug-naïve adolescent-onset schizophrenia

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Schizophrenia is a disorder resulting from aberrant brain networks and circuits. In the current study, we aimed to investigate specific network alterations in adolescent-onset schizophrenia (AOS) and to help identify the neurophysiological mechanisms of this adolescent disorder. We recruited forty-one subjects, including 20 AOS patients and 21 matched healthy controls (HCs), and we acquired brain images to examine the specific changes in functional network patterns using degree centrality (DC), which quantifies the strength of the local functional connectivity hubs. Whole-brain correlation analysis was applied to assess the relationships between clinical characteristics and DC measurements. The AOS group exhibited increased DC in the right inferior frontal lobe, right fusiform gyrus and right thalamus (p < 0.05, AlphaSim correction). Whole-brain correlation analysis found that the DC value in the right parahippocampus was positively correlated with PANSS-positive symptom scores (r = 0.80); DC in the right superior parietal lobe (SPL) was positively correlated with PANSS-negative symptom scores (r = 0.79); DC in the left precuneus was positively correlated with self-certainty (SC) scores (r = 0.70); and DC in the left medial frontal gyrus (MFG) was negatively correlated with self-reflectiveness (SR) scores (r = 0.69). We conclude that frontoparietal network and cortico-thalamo-cortical pathway disruptions could play key roles in the neurophysiological mechanisms underlying AOS. In AOS patients, the right parahippocampus and SPL are important structures associated with positive and negative symptoms, respectively, and the left precuneus and MFG contribute to deficits in cognitive insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anticevic, A., Cole, M. W., Repovs, G., Murray, J. D., Brumbaugh, M. S., Winkler, A. M., Savic, A., Krystal, J. H., Pearlson, G. D., & Glahn, D. C. (2014). Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cerebral Cortex, 24(12), 3116–3130.

    PubMed  Google Scholar 

  • Arango, C., Moreno, C., Martínez, S., Parellada, M., Desco, M., Moreno, D., Fraguas, D., Gogtay, N., James, A., & Rapoport, J. (2008). Longitudinal brain changes in early-onset psychosis. Schizophrenia Bulletin, 34, 341–353.

    PubMed  PubMed Central  Google Scholar 

  • Baker, J. T., Holmes, A. J., Masters, G. A., Yeo, B. T., Krienen, F., Buckner, R. L., & Öngür, D. (2014). Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiatry, 71(2), 109–118.

    PubMed  PubMed Central  Google Scholar 

  • Brennan, A. M., Harris, A. W., & Williams, L. M. (2013). Functional dysconnectivity in schizophrenia and its relationship to neural synchrony. Expert Review of Neurotherapeutics, 13(7), 755–765.

    CAS  PubMed  Google Scholar 

  • Brickman, A. M., Buchsbaum, M. S., Shihabuddin, L., Byne, W., Newmark, R. E., Brand, J., Ahmed, S., Mitelman, S. A., & Hazlett, E. A. (2004). Thalamus size and outcome in schizophrenia. Schizophrenia Research, 71(2–3), 473–484.

    PubMed  Google Scholar 

  • Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., Andrews-Hanna, J. R., Sperling, R. A., & Johnson, K. A. (2009). Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease. Journal of Neuroscience, 29(6), 1860–1873.

    CAS  PubMed  Google Scholar 

  • Cannon, T. D., van Erp, T. G., Bearden, C. E., Loewy, R., Thompson, P., Toga, A. W., Huttunnen, M. O., Keshavan, M. S., Seidman, L. J., & Tsuang, M. T. (2003). Early and late neurodevelopmental influences in the prodrome to schizophrenia: Contributions of genes, environment, and their interactions. Schizophrenia Bulletin, 29(4), 653–669.

    PubMed  Google Scholar 

  • Cantisani, A., Stegmayer, K., Federspiel, A., Bohlhalter, S., Wiest, R., & Walther, S. (2018). Blood perfusion in left inferior and middle frontal gyrus predicts communication skills in schizophrenia. Psychiatry Research: Neuroimaging, 274, 7–10.

    PubMed  Google Scholar 

  • Chao-Gan, Y., & Yu-Feng, Z. (2010). DPARSF: A MATLAB Toolbox for “Pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13.

    PubMed  PubMed Central  Google Scholar 

  • Correll, C. U., & Carlson, H. E. (2006). Endocrine and metabolic adverse effects of psychotropic medications in children and adolescents. Journal of the American Academy of Child and Adolescent Psychiatry, 45, 771–791.

    PubMed  Google Scholar 

  • Coscia, D. M., Narr, K. L., Robinson, D. G., Hamilton, L. S., Sevy, S., Burdick, K. E., Gunduz-Bruce, H., McCormack, J., Bilder, R. M., & Szeszko, P. R. (2009). Volumetric and shape analysis of the thalamus in first-episode schizophrenia. Human Brain Mapping, 30(4), 1236–1245.

    PubMed  Google Scholar 

  • Cronenwett, W. J., & Csernansky, J. (2010). Thalamic pathology in schizophrenia. Current Topics in Behavioral Neurosciences, 4, 509–528.

    PubMed  Google Scholar 

  • DeLisi, L. E. (2001). Speech disorder in schizophrenia: Review of the literature and exploration of its relation to the uniquely human capacity for language. Schizophrenia Bulletin, 27(3), 481–496.

    CAS  PubMed  Google Scholar 

  • Drake, R., et al. (2007). The Psychotic Symptom Rating Scales (PSYRATS): Their usefulness and properties in first episode psychosis. Schizophrenia Research, 89(1–3), 119–122.

    PubMed  Google Scholar 

  • Eichenbaum, H., Schoenbaum, G., Young, B., & Bunsey, M. (1996). Functional organization of the hippocampal memory system. Proceedings of the National Academy of Sciences of the United States of America, 24, 13500–13507.

    Google Scholar 

  • Fedorenko, E., Duncan, J., & Kanwisher, N. (2012). Language-selective and domain-general regions lie side by side within Broca’s area. Current Biology, 22(21), 2059–2062.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fornito, A., Zalesky, A., Pantelis, C., & Bullmore, E. T. (2012). Schizophrenia, neuroimaging and connectomics. NeuroImage, 62(4), 2296–2314.

    PubMed  Google Scholar 

  • Giraldo-Chica, M., & Woodward, N. D. (2017). Review of thalamocortical resting-state fMRI studies in schizophrenia. Schizophrenia Research, 180, 58–63.

    PubMed  Google Scholar 

  • Goldman, J. G., Stebbins, G. T., Dinh, V., Bernard, B., Merkitch, D., deToledo-Morrell, L., & Goetz, C. G. (2014). Visuoperceptive region atrophy independent of cognitive status in patients with Parkinson’s disease with hallucinations. Brain, 137, 849–859.

    PubMed  PubMed Central  Google Scholar 

  • Hollis, C. (2000). Adult outcomes of child- and adolescent-onset schizophrenia: Diagnostic stability and predictive validity. American Journal of Psychiatry, 157, 1652–1659.

    CAS  Google Scholar 

  • Kelly, M. J., Neggers, S. F., Daalman, K., Blom, J. D., Goekoop, R., Kahn, R. S., & Sommer, I. E. (2010). Deactivation of the parahippocampal gyrus preceding auditory hallucinations in schizophrenia. American Journal of Psychiatry, 167, 427–435.

    Google Scholar 

  • Kirov, G., Rees, E., Walters, J. T., Escott-Price, V., Georgieva, L., Richards, A. L., Chambert, K. D., Davies, G., Legge, S. E., Moran, J. L., & McCarroll, S. A. (2014). The penetrance of copy number variations for schizophrenia and developmental delay. Biological Psychiatry, 75(5), 378–385.

    CAS  PubMed  Google Scholar 

  • Liang, Y., Shao, R., Zhang, Z., Li, X., Zhou, L., & Guo, S. (2019). Amplitude of low-frequency fluctuations in childhood-onset schizophrenia with or without obsessive-compulsive symptoms: A resting-state functional magnetic resonance imaging study. Archives of Medical Science, 15(1), 126–133. https://doi.org/10.5114/aoms.2018.73422

    Article  PubMed  Google Scholar 

  • Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., & Bullmore, E. (2010). Functional connectivity and brain networks in schizophrenia. Journal of Neuroscience, 30, 9477–9487.

    CAS  PubMed  Google Scholar 

  • McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: Expertise for reading in the fusiform gyrus. Trends in Cognitive Sciences, 7(7), 293–299.

    PubMed  Google Scholar 

  • Mubarik, A., & Tohid, H. (2016). Frontal lobe alterations in schizophrenia: A review. Trends Psychiatry Psychother, 38(4), 198–206.

    PubMed  Google Scholar 

  • Nicolson, R., & Rapoport, J. L. (1999). Childhood-onset schizophrenia: Rare but worth studying. Biological Psychiatry, 46, 1418–1428.

    CAS  PubMed  Google Scholar 

  • Oishi, N., Udaka, F., Kameyama, M., Sawamoto, N., Hashikawa, K., & Fukuyama, H. (2005). Regional cerebral blood flow in Parkinson disease with nonpsychotic visual hallucinations. Neurology, 65, 1708–1715.

    CAS  PubMed  Google Scholar 

  • Owen, M. J., Sawa, A., & Mortensen, P. B. (2016). Schizophrenia. The Lancet, 388(10039), 86–97.

    Google Scholar 

  • Pettersson-Yeo, W., Allen, P., Benetti, S., McGuire, P., & Mechelli, A. (2011). Dysconnectivity in schizophrenia: Where are we now? Neuroscience and Biobehavioral Reviews, 35(5), 1110–1124.

    PubMed  Google Scholar 

  • Philippe, P., Lalanne, C., Bourgeron, T., Fauchereau, F., Poupon, C., Artiges, E., Le Bihan, D., Dehaene-Lambertz, G., & Dehaene, S. (2015). Genetic and environmental influences on the visual word form and fusiform face areas. Cerebral Cortex, 25(9), 2478–2493.

    Google Scholar 

  • Poppe, A. B., Barch, D. M., Carter, C. S., Gold, J. M., Ragland, J. D., Silverstein, S. M., & MacDonald, A. W., III. (2016). Reduced frontoparietal activity in schizophrenia is linked to a specific deficit in goal maintenance: A multisite functional imaging study. Schizophrenia Bulletin, 42(5), 1149–1157.

    PubMed  PubMed Central  Google Scholar 

  • Rubia, K. (2014). Functional brain imaging across development. European Child and Adolescent Psychiatry, 22(12), 719–731.

    Google Scholar 

  • Sato, J. R., Salum, G. A., Gadelha, A., Vieira, G., Zugman, A., Picon, F. A., Pan, P. M., Hoexter, M. Q., Anes, M., Moura, L. M., & Del’Aquilla, M. A. (2015). Decreased centrality of subcortical regions during the transition to adolescence: A functional connectivity study. NeuroImage, 104(2015), 44–51.

    PubMed  Google Scholar 

  • Schimmelmann, B. G., Schmidt, S. J., Carbon, M., & Correll, C. U. (2013). Treatment of adolescents with early-onset schizophrenia spectrum disorders: In search of a rational, evidence-informed approach. Current Opinion in Psychiatry, 26, 219–230.

    PubMed  Google Scholar 

  • Sheffield, J. M., Repovs, G., Harms, M. P., Carter, C. S., Gold, J. M., MacDonald, A. W., III., Ragland, J. D., Silverstein, S. M., Godwin, D., & Barch, D. M. (2015). Fronto-parietal and cingulo-opercular network integrity and cognition in health and schizophrenia. Neuropsychologia, 73, 82–93.

    PubMed  PubMed Central  Google Scholar 

  • Shenton, M. E., Dickey, C. C., Frumin, M., & McCarley, R. W. (2001). A review of MRI findings in schizophrenia. Schizophrenia Research, 49(1–2), 1–52.

    CAS  PubMed  Google Scholar 

  • Sherman, S. M. (2017). Functioning of circuits connecting thalamus and cortex. Comprehensive Physiology, 7(2), 713–739.

    PubMed  Google Scholar 

  • Thompson, P. M., Vidal, C., Giedd, J. N., Gochman, P., Blumenthal, J., Nicolson, R., Toga, A. W., & Rapoport, J. L. (2001). Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11650–11655.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasi, D., Shokri-Kojori, E., & Volkow, N. D. (2016). High-resolution functional connectivity density: Hub locations, sensitivity, specificity, reproducibility, and reliability. Cerebral Cortex, 26(7), 3249–3259.

    PubMed  Google Scholar 

  • van den Heuvel, M. P., & Fornito, A. (2014). Brain networks in schizophrenia. Neuropsychology Review, 24, 32–48.

    PubMed  Google Scholar 

  • Watsky, R. E., Gotts, S. J., Berman, R. A., McAdams, H. M., Zhou, X., Greenstein, D., Lalonde, F. M., Gochman, P., Clasen, L. S., Shora, L., & Ordóñez, A. E. (2018). Attenuated resting-state functional connectivity in patients with childhood- and adult-onset schizophrenia. Schizophrenia Research, 197, 219–225.

    PubMed  Google Scholar 

  • Zhao, C., Zhu, J., Liu, X., Pu, C., Lai, Y., Chen, L., Yu, X., & Hong, N. (2018). Structural and functional brain abnormalities in schizophrenia: A cross-sectional study at different stages of the disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 83, 27–32.

    PubMed  Google Scholar 

  • Zhou, M., Yang, C., Bu, X., Liang, Y., Lin, H., Hu, X., Chen, H., Wang, M., & Huang, X. (2019). Abnormal functional network centrality in drug-naïve boys with attention-defcit/hyperactivity disorder. European Child & Adolescent Psychiatry., 28(10), 1321–1328. https://doi.org/10.1007/s00787-019-01297-6

    Article  Google Scholar 

  • Zmigrod, L., Garrison, J. R., Carr, J., & Simons, J. S. (2016). The neural mechanisms of hallucinations: A quantitative meta-analysis of neuroimaging studies. Neuroscience and Biobehavioral Reviews, 69, 113–123.

    PubMed  Google Scholar 

  • Zuo, X. N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F. X., Sporns, O., & Milham, M. P. (2012). Network centrality in the human functional connectome. Cerebral Cortex, 22(8), 1862–1875.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XH and GH conceived and designed the experiments. MZ, LZ, and RJ recruited the patients and collected the data. MZ, YG, RF and RJ performed the data analyses. MZ, YG, LZ and XH wrote the manuscript. LZ, XH, and HC helped to perform the analysis with constructive discussions. MZ and LZ contributed to this study equally.

Corresponding authors

Correspondence to Guoping Huang or Xiaoqi Huang.

Ethics declarations

Conflict of interest

On behalf of all of the authors, the corresponding author states that there are no conflicts of interest.

Ethical approval

Approval for this study was granted by the local ethical committee of the Third Hospital of Mianyang/Sichuan Mental Health Center.

Informed consent

All of the participants and their parents were fully informed about the purpose and procedures of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Zhuo, L., Ji, R. et al. Alterations in functional network centrality in first-episode drug-naïve adolescent-onset schizophrenia. Brain Imaging and Behavior 16, 316–323 (2022). https://doi.org/10.1007/s11682-021-00505-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-021-00505-9

Keywords

Navigation