Skip to main content
Log in

Black hole in Nielsen-Olesen vortex

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this article, we calculate the classical vortex solution of a spontaneously broken gauge theory interacting with gravity in (2+1)-dimension. We also calculate the conditions for the formation of a (2+1)-dimensional black hole due to magnetic vortex (a Nielsen-Olesen vortex). The semiclassical Hawking temperature for this black hole is calculated, where we see that the temperature of a BTZ black hole increases or decreases without changing the size of the horizon if we insert the magnetic vortex fields in the black hole. Finally, the first law of black hole thermodynamics is described for this particular solution, which shows that the additional work terms from the scalar and gauge fields compensate the change in the temperature relative to its usual value for the BTZ solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Holger Bech Nielsen and Poul Olesen, Vortex-line models for dual strings, Nuclear Physics B 61, 45–61 (1973)

    Article  Google Scholar 

  2. Kimyeong Lee, VP Nair, and Erick J Weinberg, Black holes in magnetic monopoles, Physical Review D 45, 2751 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  3. Fay Dowker, Ruth Gregory, and Jennie Traschen, Euclidean black-hole vortices, Physical Review D 45, 2762 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. JD Edelstein, G Lozano, and FA Schaposnik, Vortices in curved space-time, Modern Physics Letters A 8, 3665–3672 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  5. Maximo Banados, Claudio Teitelboim, and Jorge Zanelli, Black hole in three-dimensional spacetime, Physical Review Letters 69, 1849 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. Hawking, Stephen W.: Black hole explosions? Nature 248, 30–31 (1974)

    Article  ADS  Google Scholar 

  7. Stephen W Hawking, Particle creation by black holes, Communications in mathematical physics 43, 199–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  8. Jacob D Bekenstein, Black holes and the second law, Lett. Nuovo Cim 4, 113 (1972)

    Article  Google Scholar 

  9. Jacob D Bekenstein, Black holes and entropy, Physical Review D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  10. James M Bardeen, Brandon Carter, and Stephen W Hawking, The four laws of black hole mechanics, Communications in mathematical physics 31, 161–170 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  11. Jacob D Bekenstein, Generalized second law of thermodynamics in black-hole physics, Physical Review D 9, 3292 (1974)

    Article  ADS  Google Scholar 

  12. Stephen W Hawking, Black holes and thermodynamics, Physical Review D 13, 191 (1976)

    Article  ADS  Google Scholar 

  13. Maulik K Parikh and Frank Wilczek, Hawking radiation as tunneling, Physical Review Letters 85, 5042 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  14. Qing Quan Jiang: Shuang Qing Wu, and Xu Cai, Hawking radiation as tunneling from the kerr and kerr-newman black holes. Physical Review D 73, 064003 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. Srinivasan, K., Padmanabhan, T.: Particle production and complex path analysis. Physical Review D 60, 024007 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  16. Ryan Kerner and Robert B Mann, Tunnelling, temperature, and taub-nut black holes, Physical Review D 73, 104010 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. Rabin Banerjee and Bibhas Ranjan Majhi, Quantum tunneling beyond semiclassical approximation, Journal of High Energy Physics 2008, 095 (2008)

    MathSciNet  Google Scholar 

  18. Eduard Alexis Larrañaga, On the first law of thermodynamics for (2+ 1) dimensional charged btz black hole and charged de sitter space, Turkish Journal of Physics 32, 1–4 (2008)

    Google Scholar 

  19. Prince A Ganai, Sudhaker Upadhyay, et al.: A report on thermodynamics of charged rotating btz black hole, arXiv preprint arXiv:1912.00767 (2019)

  20. Ruth Gregory, Peter C Gustainis, David Kubizňák, Robert B Mann, and Danielle Wills, Vortex hair on ads black holes, Journal of High Energy Physics 2014, 10 (2014)

    Article  MathSciNet  Google Scholar 

  21. Shiing-Shen Chern and James Simons, Characteristic forms and geometric invariants, Annals of Mathematics 99, 48–69 (1974)

    Article  MathSciNet  Google Scholar 

  22. Sean A Hartnoll, Christopher P Herzog, and Gary T Horowitz, Building a holographic superconductor, Physical Review Letters 101, 031601 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar J. B. Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, K.J.B. Black hole in Nielsen-Olesen vortex. Gen Relativ Gravit 53, 79 (2021). https://doi.org/10.1007/s10714-021-02850-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02850-y

Keywords

Navigation