Skip to main content

Advertisement

Log in

Late Aptian carbonate platform evolution and controls (south Tethys, Tunisia): response to sea-level oscillations, palaeo-environmental changes and climate

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The late Aptian Lower Serdj Formation (LSF) in the Northern Atlas of Tunisia records a mixed carbonate–siliciclastic system from the southern margin of Tethys. Sedimentological investigations of key sections in the Serdj-Bargou area along a NE–SW-platform-to-basin profile reveal five shallow-marine carbonate units (Cu1, Cu2, Cu3, Cu4a and Cu4b), dominated by subtidal deposits, separated by four terrigenous units (T1, T2, T3, T3a). Twelve basic facies are grouped into six facies associations or zones (FZA to FZF), representing particular palaeo-environments from proximal to distal settings. Carbonate units Cu1, Cu2 and Cu4a are dominated by coral algal-Orbitolina facies representative of a homoclinal ramp. However, units Cu3 and Cu4b are dominated by high-energy oolitic facies of a shoaled ramp. The terrigenous deposits (T1 to T4) are dominated by siliciclastics with shale, sandstone/siltstone and marl and have mostly been assigned to off-platform to basinal environments (FZF). The vertical facies changes are closely related to amplitudes of sea-level fluctuations and late Aptian Tethyan climatic perturbations. The terrigenous units were the result of short cooling periods and a humid climate. Moreover, this climate favoured the development of tide-influenced oolitic shoals, with the nuclei of ooids formed by fine quartz grains. Both the oolitic and siliciclastic deposits reflect episodes of maximum platform progradation basin-ward at a time of low accommodation space through the late Aptian period. Overall the new stratigraphic dataset from the southern Tethys margin is interpreted as reflecting the global Late Aptian cooling episode and sea-level lowstand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Al-Husseini MI, Matthews RK (2010) Tuning Late Barremian–Aptian Arabian Plate and global sequences with orbital periods. GeoArabia Spec Publ 4:199–228

    Google Scholar 

  • Alnazghah MH, Bádenas B, Pomar L, Aurell M, Morsilli M (2013) Facies heterogeneity at interwell-scale in a carbonate ramp, Upper Jurassic, NE Spain. Mar Pet Geol. https://doi.org/10.1016/j.marpetgeo.2013.03.004

  • Andres MS, Sumner DY, Reid RP, Swart PK (2006) Isotopic fingerprints of microbial respiration in aragonite from Bahamian stromatolites. Geology 34:973–976

    Article  Google Scholar 

  • Aurell M, Bádenas B, Bosence DWJ, Waltham DA (1998) Carbonate production and offshore transport on a Late Jurassic carbonate ramp (Kimmeridgian, Iberian basin, NE Spain): evidence from outcrops and computer modelling. In: Wright VP, Burchette TP (eds) Carbonate ramps, vol 149. Geol Soc London Spec Publication, pp 137–161

  • Ben Chaabane N (2019) Aptian-Early Albian carbonate platform development of Serdj Bargou and adjacent domains (Atlas Tunisia): surface-subsurface stratigraphy; sedimentology and depositional models; sequence stratigraphy and reservoir characterization. Thesis on geologic sciences (unpublished). University of Tunis El Manar, p 444

  • Ben Chaabane N, Soussi M, Khemiri F, Troudi H, Ouahchi A (2013) Architecture des dépôts carbonatés de la bordure de plate-forme Serdj de la Tunisie centrale au Clansayesien (Aptien supérieur). Association des Sédimentologistes Français, 2013. Volume des abstracts 28, p 250

  • Ben Chaabane N, Khemiri F, Soussi M, Troudi H, Ouahchi A, Saidi M, Meskini A (2015) Aptian carbonate Platform of Central Tunisia: internal architecture and evolution. The 13 Conf. ETAP EPC 2015 (extended abstract)

  • Ben Chaabane N, Khemiri F, Soussi M, Latil J-L, Robert E, Belhajtaher I (2019) Aptian-Lower Albian Serdj carbonate platform of the Tunisian Atlas: development, demise and petroleum implication. Mar Pet Geol 101:566–591. https://doi.org/10.1016/j.marpetgeo.2018.10.036

    Article  Google Scholar 

  • Bonin A (2011) Relations entre les variations climatiques, les perturbations du cycle du carbone et les crises de la production. These en Science de la terre. Université de Bourgogne, France, p 242

  • Bouaziz S, Barrier E, Soussi M, Turki MM, Zouari H (2002) Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics 337:227–253

    Article  Google Scholar 

  • Bover-Arnal T, Moreno-Bedmar JA, Salas R, Skelton PW, Bitzer K, Gili E (2010) Sedimentary evolution of an Aptian syn-rift carbonate system (Maestrat Basin, E Spain): effects of accommodation and environmental change. Geol Acta 8:249–280

    Google Scholar 

  • Bover-Arnal T, Salas R, Guimerà J, Moreno-Bedmar JA (2014) Deep incision in an Aptian carbonate succession indicates major sea-level fall in the Cretaceous. Sedimentology. https://doi.org/10.1111/sed.12105

    Article  Google Scholar 

  • Bover-Arnal T, Moreno-Bedmar JA, Frijia G, Pascual-Cebrian E, Salas R (2016) Chronostratigraphy of the Barremian–Early Albian of the Maestrat Basin (E Iberian Peninsula): integrating strontium-isotope stratigraphy and ammonoid biostratigraphy. Newslett Stratigr 49:41–68

    Article  Google Scholar 

  • Burchette TP, Wright VP (1992) Carbonate ramp depositional systems. Sed Geol 79:3–57

    Article  Google Scholar 

  • Burollet PF, Ellouze N (1986) L’évolution des bassins sédimentaires de la Tunisie centrale et orientale. Bull Cent Rech Exploit Prod Elf Aquitaine 10:49–68

    Google Scholar 

  • Catuneanu O (2019) Scale in sequence stratigraphy. Mar Pet Geol 106:128–159. https://doi.org/10.1016/j.marpetgeo.2019.04.026

    Article  Google Scholar 

  • Catuneanu O, Galloway WE, StC Kendall CG, Miall AD, Posamentier HW, Strasser A, Tucker ME (2011) Sequence stratigraphy: methodology and nomenclature. Newslett Stratigr 443:173–245. https://doi.org/10.1127/0078-0421/2011/0011

    Article  Google Scholar 

  • Clarke LJ, Jenkyns HC (1999) New oxygen isotope evidence for long-term Cretaceous climate change in the Southern Hemisphere. Geology 27:699–702

    Article  Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to their depositional texture. In: Ham WE (ed) Classification of carbonate rocks. A symposium, vol 1. American Association of Petroleum Geologists Memoir, Tulsa, OK, pp 108-121

  • El Euchi H (1990) La Tunisie du Centre-Ouest de l’Aptien à l’Actuel: tectonique coulissante, dynamique sédimentaire associée et essai de caractérisation des séquences de dépôt. Unpublished thesis, Doctorat 3ème cycle, Université Tunis II (Tunisia), p 263

  • Fischer AG, Arthur MA (1977) Secular variations in the pelagic realm. Soc Econ Paleontol Miner Spec Publ 25:19–50

    Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks. Analysis, interpretation and application. Springer-Verlag, Germany

    Google Scholar 

  • Flügel E (2010) Microfacies of carbonate rocks, analysis, interpretation and application, 2nd edn. Springer, Berlin, p 1006

    Google Scholar 

  • Föllmi KB (2012) Early cretaceous life, climate and anoxia. Cret Res 35:230–257

    Article  Google Scholar 

  • Fries G, Beaudoin B, Joseph P, Paternoster B (1984) Les grès de Rosans et les slumpings aptiens associés: restitution paléomorphologique. Bull Soc Geol France 7:693–702

    Article  Google Scholar 

  • Graziano R, Raspini A (2015) Long- and short-term hydroclimatic variabilities in the Aptian Tethys: Clues from the orbital chronostratigraphy of evaporite-rich beds in the Apennine carbonate platform (Mt. Faito, southern Italy). Palaeogeogr Palaeoclimatol Palaeoecol 418:319–343. https://doi.org/10.1016/j.palaeo.2014.11.021

    Article  Google Scholar 

  • Gréselle B, Pittet B (2005) Fringing carbonate platforms at the Arabian Plate margin in northern Oman during the Late Aptian-Middle Albian: evidence for high-amplitude sea-level changes. Sed Geol 175:367–390

    Article  Google Scholar 

  • Hallock P (1986) The role of nutrient availability in bioerosion: Consequences to carbonate buildups. Palaeogeogr Palaeoclimatol Palaeoecol 63:275–291. https://doi.org/10.1016/0031-0182(88)90100-9

    Article  Google Scholar 

  • Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios I 89:398

    Google Scholar 

  • Haq BU, Hardenbol I, Vail PR (1988) Mesozoic and Cenozoic chrono-stratigraphy and cycles of sea-level change. In: Wilgus CK, Hastings BS, Kendall CGStC, Posamentier H, Ross CA, Van Wagoner JC (eds) Sea level changes, an integrated approach. Society of Economic Paleontologists and Mineralogists, Special Publication no 42, pp 71–108

  • Hardenbol J, Thierry J, Farle MB, JacquinGraciansky TDEPC, Vail PR (1998) Mesozoic and cenozoic sequence stratigraphy of European Basins. SEPM Spec Public No 60:1–13

    Google Scholar 

  • Heldt M, Lehmann J, Bachmann M, Negra MH, Kuss J (2010) Increased terrigenous influx but no drowning: palaeoenvironmental evolution of the Tunisian carbonate platform margin during the Late Aptian. Sedimentology 57:695–719

    Article  Google Scholar 

  • Hfaiedh R, Vanneau AA, Godet A, Arnaud H, Zghal I, Ouali J, Latil J-L, Jallali H (2013) Biostratigraphy palaeoenvironments and sequence stratigraphy of the Aptian sedimentary succession at Jebel Bir Oum Ali (Northern Chain of Chotts South Tunisia): Comparison with contemporaneous Tethyan series. Cretaceous Research 46:177–207. https://doi.org/10.1016/j.cretres.2013.08.004

    Article  Google Scholar 

  • Jacquin T, Arnaud-Vanneau A, Arnaud H, Ravenne C, Vail PR (1991) Systems tracts and depositional sequences in a carbonate setting: a study of continuous outcrops from platform to basin at the scale of seismic lines. Mar Pet Geol 8:122–139

    Article  Google Scholar 

  • Latil J-L (2011) Early Albian ammonites from Central Tunisia and adjacent areas of Algeria. Revue de Paléobiologie, Genève 30:321–429

  • Lehmann J, Heldt M, Bachmann M, Negra MEH (2009) Aptian (Lower Cretaceous) biostratigraphy and cephalopods from north-central Tunisia. Cretac Res 30:895–910

    Article  Google Scholar 

  • M’Rabet A (1981) Stratigraphie, sédimentation et diagenèse carbonatée des séries du Crétacé inférieur de Tunisie Centrale. Thèse Doctorat ès Sciences, Université de Paris-Sud centre d'Orsay, p 540

  • Margalef R (1968) The pelagic ecosystem of the Caribbean Sea: symposium on investigations and resources of the Caribbean Sea and adjacent regions. UNESCO, France, Paris, pp 484–498

    Google Scholar 

  • Masse JP (1984) Données nouvelles sur la stratigraphie de l’Aptien carbonaté de la Tunisie centrale, conséquences paleogeographiques. Bull Soc Geol Fr 6:1077–1086

    Article  Google Scholar 

  • Masse JP, Bellion Y, Benkhelil J, Ricou LE, Dercourt J, Guiraud R (1993) Early Aptian (114–111 Ma). In: Dercourt J, Ricou LE, Vrielynck B (eds) Atlas Tethys palaeoenvironmental maps. Gauthier-Villars, Paris, pp 135–152

    Google Scholar 

  • Maurer F, Al-Mehsin K, Pierson BJ, Eberli GP, Warrlich G, Drysdale D, Droste HJ (2010) Facies characteristics and architecture of Upper Aptian Shuaiba clinoforms in Abu Dhabi. GeoArabia Spec Publ 4:445–468

    Google Scholar 

  • Maurer F, Van Buchem FSP, Eberli GP, Pierson BJ, Raven MJ, Larsen PH, Al-Husseini MI, Vincent B (2013) Late Aptian long-lived glacio-eustatic lowstand recorded on the Arabian Plate. Terra Nov. https://doi.org/10.1111/ter.12009.

  • Medvedev AL, Lopatin AY, Masalkin YV (2011) Comparative characteristics of the lithological composition of the incised valley fill and host sediments of the Vikulovo Formation, Kamenny Area, West Siberia. Lithol Min Resour 46:369–381

    Article  Google Scholar 

  • Millán MI, Weissert HJ, Owen H, Fernández-Mendiola PA, García-Mondéjar J (2011) The Madotz Urgonian platform (Aralar, northern Spain): paleoecological changes in response to Early Aptian global environmental events. Palaeogeogr Palaeoclimatol Palaeoecol. https://doi.org/10.1016/j.palaeo.2011.10.005

    Article  Google Scholar 

  • Morsilli M, Bosellini FR, Pomar L, Hallock P, Aurell M, Papazzoni CA (2012) Mesophotic coral buildups in a prodelta setting (Late Eocene, southern Pyrenees, Spain): a mixed carbonate–siliciclastic system. Sedimentology 59(3):766–794. https://doi.org/10.1111/j.1365-3091.2011.01275.x

    Article  Google Scholar 

  • Negra MH, Skelton PW, Gili E, Valldeperas FX, Argles T (2016) Recognition of massive Upper Cretaceous carbonate bodies as olistoliths using rudist bivalves as internal bedding indicators (Campanian Merfeg Formation, Central Tunisia). Cretaceous Res 66. https://doi.org/10.1016/j.cretres.2016.06.003.

  • Olivier N, Carpentier C, Martin-Garin B, Lathuilière B, Gaillard C, Ferry S, Hantzpergue P, Geister J (2004) Coral-microbialite reefs in pure carbonate versus mixed carbonate–siliciclastic depositional environments: the example of the Pagny-sur-Meuse section (Upper Jurassic, northeastern France). Facies 50:229–255. https://doi.org/10.1007/s10347-004-0018-5

    Article  Google Scholar 

  • Olivier N, Pittet B, Werner W, Hantzpergue P, Gaillard C (2008) Facies distribution and coral-microbialite reef development on a low-energy carbonate ramp (Chay Peninsula, Kimmeridgian, western France). Sediment Geol 205:14–33. https://doi.org/10.1016/j.sedgeo.2007.12.011

    Article  Google Scholar 

  • Ouahchi A, M’Rabet A, Lazreg J, Messaoudi F, Ouazaa S (1998) Early structuring, paleo-emersion and porosity development: a key for exploration of the Aptian Serdj carbonate reservoir in Tunisia. In: Proceedings of the 6th Tunisian petroleum exploration and production conference, vol 6, Tunis (Tunisia), pp 267–284

  • Ouahchi A, Abbassi K, El Euchi H (2003) L’événement Aptien-Albien en Tunisie : mécanismes, structures associées et implications pétrolières. ATEIG 1:27–30

    Google Scholar 

  • Pierson BJ, Eberli GP, Al-Mehsin K, Al-Menhali S, Warrlich G, Droste HJ, Maurer F, Whitworth J, Drysdale D (2010) Seismic stratigraphy and depositional history of the Upper Shuaiba (Late Aptian) in the UAE and Oman. GeoArabia Spec Publ 4:411–444

    Google Scholar 

  • Pomar L (2001) Types of carbonate platforms: a genetic approach. Basin Res. https://doi.org/10.1046/j.0950-091X.2001.00152.x

    Article  Google Scholar 

  • Pomar L, Hallock P (2008) Carbonate factories: a conundrum in sedimentary geology. Earth Sci Rev 87:134–169. https://doi.org/10.1016/j.earscirev.2007.12.002

    Article  Google Scholar 

  • Pomar L, Kendall CG (2008) Architecture of carbonate platforms: a response to hydrodynamics and evolving ecology. SEPM 89:187–216

    Google Scholar 

  • Pomar L, Aurell M, Badenas B, Morsilli M, Fahd Al-Awwad S (2015) Depositional model for a prograding oolitic wedge, upper Jurassic, Iberian basin. Mar Pet Geol 67:556–582. https://doi.org/10.1016/j.marpetgeo.2015.05.025

    Article  Google Scholar 

  • Qi L, Carr TR, Goldstein RH (2007) Geostatistical three-dimensional modeling of oolite shoals, St. Louis Limestone, southwest Kansas. AAPG Bull 91:69–96

    Article  Google Scholar 

  • Rankey EC, Reeder SL (2011) Holocene oolitic Marine sand complexes of the Bahamas. J Sediment Res 81:97–117

    Article  Google Scholar 

  • Raven MJ, van Buchem FSP, Larsen PH, Surlyk F, Steinhardt H, Cross D, Klem N, Emang M (2010) Late Aptian incised valleys and siliciclastic infill at the top of Shu’aiba Formation (Block 5, offshore Qatar). GeoArabia Spec Publ 4:469–502

    Google Scholar 

  • Read JF (1995) Overview of carbonate platform sequences, cycle stratigraphy and reservoirs in greenhouse and icehouse worlds. In: Read JF, Kerans C, Weber LJ, Sarg JF, Wright FM (eds) Milankovitch sea-level changes, cycles and reservoirs on carbonate platforms in greenhouse and ice-house worlds. SEPM short course, vol 35, pp 1–102

  • Reboulet S, Szives O, Aguirre-Urreta B, Barragán R, Company M, Idakieva V, Ivanov M, Kakabadze MV, Moreno-Bedmar JA, Sandoval J, Baraboshkin EJ, Çaǧlar MK, Fozy I, González-Arreola C, Kenjo S, Lukeneder A, Raisossadat SN, Rawson PF, Tavera JM (2014) Report on the 5th international meeting of the IUGS lower cretaceous ammonite working group, the Kilian group (Ankara, Turkey, 31st August 2013). Cretac Res 50:126–137. https://doi.org/10.1016/j.cretres.2014.04.001

    Article  Google Scholar 

  • Ricou LE (1994) Tethys reconstructed: plates, continental fragments and their boundaries since 260Ma from Central America to South Asia. Géodyn Acta 7:160–218

    Google Scholar 

  • Riding R (2002) Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. Earth Sci Rev 58:163–231

    Article  Google Scholar 

  • Riding R, Liang I (2005) Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Paleogeogr Paleoclimatol Paleoecol 219:101–115

    Article  Google Scholar 

  • Rigane A, Feki M, Gourmelen C, Montacer M (2010) The ‘“Aptian Crisis”’ of the South-Tethyan margin: new tectonic data in Tunisia. J Afr Earth Sc 57:360–366

    Article  Google Scholar 

  • Rodriguez-Lopez JP, Melendez N, de Boer PL, Soria AR (2008) Aeolian sand sea development along the mid-Cretaceous western Tethyan margin (Spain): erg sedimentology and palaeoclimate implications. Sedimentology 55:1253–1292

    Article  Google Scholar 

  • Ross DJ, Skelton PW (1993) Rudist formations of the Cretaceous: a palaeoecological, sedimentological and stratigraphical review. Sedimentol Rev https://doi.org/10.1002/9781444304534.

  • Sahagian D, Pinous O, Olferiev A, Zakharov V (1996) Eustatic curve for the Middle Jurassic-Cretaceous based on Russian platform and Siberian stratigraphy: zonal resolution. Am Assoc Petrol Geol Bull 80:1433–1458

    Google Scholar 

  • Sarg JF (1988) Carbonate sequence stratigraphy. In: Wilgus CK, Hastings BS, Kendall CGSC, Posamentier HW, Ross CA, Van Wagoner JC (eds) Sea level changes—an integrated approach. SEPM Special Publication, vol 42, pp 155–182

  • Sedjil A (1981) Stratigraphie et Sédimentologie du Crétacé post-Aptien en Tunisie Centrale et Septentrionale. Thèse 3e Cycle, Univ. Paris-Sud. (Unpublished), p 141

  • Simmons MD, Whittaker JE, Jones RW (2000) Orbitolinids from Cretaceous sediments of the Middle East—a revision of the F. R. S. Henson and Associates Collection. In: Hart MB, Kaminski MA, Smart CW (eds) Proceedings of the fifth international workshop on agglutinated foraminifera. Grzybowski Foundation Spec Publ 7, pp 411–437

  • Skelton PW, Gili E (2012) Rudists and carbonate platforms in the Aptian: a case study on biotic interactions with ocean chemistry and climate. Sedimentology 59:81–117

    Article  Google Scholar 

  • Skelton PW, Castro JM, Ruiz-Ortiz PA (2019) Aptian carbonate platform development in the Southern Iberian Aptian carbonate platform development in the Southern Iberian Palaeomargin (Prebetic of Alicante, SE Spain). Bull Soc Geol France 190:3. https://doi.org/10.1051/bsgf/2019001

    Article  Google Scholar 

  • Soussi M (2002) Le Jurassique de la Tunisie atlasique: stratigraphie, dynamique sédimentaire, paléogéographique et intérêt pétrolier. Documents des laboratoires de Géologie de Lyon, p 363

  • Strasser A, Vedrine S (2009) Controls on facies mosaics of carbonate platforms: a case study from the Oxfordian of the Swiss Jura. In: Swart PK, Eberli GP, McKenzie JA (eds) Perspectives in carbonate geology: a tribute to the career of Robert Nathan Ginsburg, pp 199–213

  • Strasser A, Pittet B, Hillgartner H, Pasquier JB (1999) Depositional sequences in shallow carbonate-dominated sedimentary systems: concepts for a high-resolution analysis. Sed Geol 128:201–221

    Article  Google Scholar 

  • Tlatli M (1980) Etude des calcaires de l´apto-Aptien des Djebels Serdj et Bellouta (Tunisie Centrale). Thesis Aix-Marseille 2 Univ, p 187

  • Tomás S, Homann M, Mutti M, Amour F, Christ N, Immenhauser A, Agar SM, Kabiri L (2013) Alternation of microbial mounds and ooid shoals (middle Jurassic, Morocco): response to paleoenvironmental changes. Sediment Geol 294:68–82. https://doi.org/10.1016/j.sedgeo.2013.05.008

    Article  Google Scholar 

  • Touir J, Ben Haj Ali N, Donze P, Maamouri AL, Memmi L, M'Rabet A, Razgallah S, Zaghbib-Turki D (1989) Biostratigraphie et sédimentologie des séquences du Crétacé supérieur du Jebel M’rhila (Tunisie centrale). Géologie Méditerranéenne

  • Troudi H (2000) Characterization of the Aptian Serdj Carbonate reservoir in the Kaboudia offshore Permit in Tunisia. Planches interernal report 50, p 43

  • Tucker ME, Wright VP (1990) Carbonate Sedimentology. Blackwell Scientific Publications, Oxford.

  • Turki MM (1985) Polycinématique et contrôle sédimentaire associe sur la cicatrice Zaghouan-Nebhana. These Doct. es Sci. Universite de Tunis, et Revue des Sciences de la Terre, Tunis, CST-NRST 7, p 252

  • Van Buchem FSP, Al-Husseini MI, Maurer F, Droste HJ, Yose LA (2010) Sequence-stratigraphic synthesis of the Barremian – Aptian of the eastern Arabian Plate and implications for the petroleum habitat. GeoArabia Spec Publ 4:9–48

    Google Scholar 

  • Vincent B, van Buchem FSP, Bulot LG, Immenhauser A, Caron C, Baghbani D, Huc AY (2010) Carbon-isotope stratigraphy, biostratigraphy and organic matter distribution in the Aptian – Lower Albian successions of southwest Iran (Dariyan and Kazhdumi formations). GeoArabia Spec Publ 4:139–197

    Google Scholar 

  • Weissert H, Lini A, Follmi KB, Kuhn O (1998) Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events. Palaeogr Palaeoclimatol Palaeoecol 137:189–203

    Article  Google Scholar 

  • Wilson JL (1975) Carbonate facies in geologic history. Springer, New York, p 411

    Book  Google Scholar 

  • Wortmann U, Herrle JO, Weissert H (2004) Altered carbon cycling and coupled changes in Early Cretaceous weathering patterns: evidence from integrated carbon isotope and sandstone records of the western Tethys. Earth Planet Sci Lett 220:69–82

    Article  Google Scholar 

  • Zaitlin BA, Warren MJ, Potocki D, Rosenthal L, Boyd R (2002) Depositional styles in a low accommodation foreland basin setting: an example from the Basal Quartz (Lower Cretaceous), southern Alberta. Bull Canad Petrol Geol 50:31–72

    Article  Google Scholar 

Download references

Acknowledgements

This paper is a part of the first author’s PhD thesis (LR18ES07, Department of Geology, Faculty of Sciences, University of Tunis El Manar). We would like to thank the Tunisian Oil Campany (ETAP) for providing the logistical support for this project. We are grateful to the Editor-in-Chief Maurice Tucker and to Bernard Pittet and J Josep A. Moreno Bedmar, for their extremely helpful comments and detailed reviews that greatly improved the original manuscript. We are grateful to Dr. D. J. Salmouna for the English revision that improved the quality of the first draft of the manuscript. The first author of this work warmly thanks Dr. Robert W. Scott from Oklahoma University (USA) who provided valuable comments and corrections to the early version of the manuscript. Assistance in the field by H. Sayari, A. Hedfi and A. Bechellaoui are very much appreciated.

Author information

Authors and Affiliations

Authors

Contributions

NBC led the research as well as detailed knowledge on the research target and discussions. NBC wrote the manuscript and created the figures. NBC and FK logged the field sections. FK greatly improved the manuscript and the figures during the revision round, and aided fieldwork planning and logistics. MS contributed significantly to the first steps of scientific progress of the research. IBHT provided knowledge on some stratigraphic questions. All the authors contributed to insightful discussions that formed this article.

Corresponding author

Correspondence to Najeh Ben Chaabane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Chaabane, N., Khemiri, F., Soussi, M. et al. Late Aptian carbonate platform evolution and controls (south Tethys, Tunisia): response to sea-level oscillations, palaeo-environmental changes and climate. Facies 67, 26 (2021). https://doi.org/10.1007/s10347-021-00634-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-021-00634-z

Keywords

Navigation