Skip to main content
Log in

Intensive Studies for Modeling and Thermodynamics of Fusion Digestion Processes of Abu Rusheid Mylonite Rocks

  • Latest Developments in Manufacturing and Recycling of Refractory Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Mylonite rocks of the Abu Rusheid area, Southeastern Desert of Egypt, were physically upgraded producing Zr, Ti, Nb, and REEs concentrate. Comparative fusion digestion studies of the concentrate using NaOH and KOH were carried out. Dissolution efficiencies of 83.4%, 99.8%, 69.7%, and 97.1% for Zr, Nb, Ti, and REEs, respectively, were accomplished using NaOH under 1023 K, 90 min, 1:1.25 ratio, and 74 µm particle size. However, 79.5, 87.3, 90.5, and 97.4% were achieved using KOH under 1023 K, 90 min, 1:1.75 ratio, and 44 µm particle size. Suggested pseudo-reversible first-order, uptake general, and shrinking core models fitted well with the experimental results using the two alkalis. Convergent activation energies were calculated using the three models. A suggested Floatotherm including the Van’t Hoff parameters model showed endothermic and spontaneous behavior with a decrease in the randomness at the solid/solution interface during the attack of fused alkali on the concentrate particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.A. Ali, Geologija 55, 1. (2012).

    Article  Google Scholar 

  2. M.E. Ibrahim, G.M. Saleh, T. Amer, F.O. Mahmoud, A.A. Abu El Hassan, I.H. Ibrahim, M.A. Aly, M.S. Azab, M.A. Rashed, F.M. Khaleal, and M.A. Mahmoud, Internal report (Nuclear Materials Authority, Cairo, 2004).

    Google Scholar 

  3. M.E. Ibrahim, A.A. Abd-El-Wahed, F. Oraby, Abu El-Hassan, M.M. EL GaLy, and K. Watanabe, The Fifth International Conference on the Geology of Africa, Assiut-Egypt, 1 (2007).

  4. M.A. Ali, D.R. Lentz, and D.C. Hall, Chin. J. Geochem. 30, 226. (2011).

    Article  Google Scholar 

  5. A.H. El-Afandy, M.G. El-Feky, S. Taha, S.M. El Minyawi, and H.A. Sallam, Greener J. Geolog. Earth Sci. 4, 3. (2016).

    Google Scholar 

  6. M.E. Ibrahim, M.M. El Tokhi, G.M. Saleh, and M.A. Rashed, 7th Intern (Conf. on Geochem. Fac. Sci. Alex. Univ. Alex, Egypt, 2006).

    Google Scholar 

  7. G.M. Saleh, Chinese J. Geochem. 26, 333. (2007).

    Article  Google Scholar 

  8. M.E. Ibrahim, K. Watanabe, G.M. Saleh, and W.S. Ibrahim, Arabian. J. Geosci. 8, 9261. (2015).

    Google Scholar 

  9. D.I. Zaki, N. Shawky, E.M. El-Sheikh, F.Y. Ahmed, and M.E. Ibrahim, Chinese J. Geochem. 31, 64. (2012).

    Article  Google Scholar 

  10. M.M. Fawzy, M.S. Kamar, and G.M. Saleh, Inter. Rev. App. Sci. Eng. 12, 134. (2021).

    Google Scholar 

  11. Y.M. Khawassek, A.A. Eliwa, E.A. Gawad, and S.M. Abdo, J. Rad. Res. Appl. Sci. 8, 583. (2015).

    Google Scholar 

  12. O.M. El-Hussaini, and M. Mahdy, Hydrometallurgy 64, 219. (2002).

    Article  Google Scholar 

  13. Y. Xiuli, Z. Junwei, F. Xihui, and Q. Tingsheng, J. Refract. Met. Hard Mater., 45 (2014).

  14. A.B. Eduardo, and J.M. Francisco, Miner. Eng. 21, 2. (2008).

    Article  Google Scholar 

  15. Z. Bo, L. Chengjun, L. Chunlong, and J. Maofa, Miner. Eng. 65, 17. (2014).

    Article  Google Scholar 

  16. P. Cameron, and M. Gavin, Ore Geol. Rev. 107, 629. (2019).

    Article  Google Scholar 

  17. S.A. Farzaneh, N. Mohammad, and G. Ahmad, J. Rare Earths 35, 8. (2017).

    Google Scholar 

  18. R.C. Doman, and A.M. Alper, Refractory minerals (Springer, Boston, 1983).

    Google Scholar 

  19. J.F. Reginaldo, J.B.D. Achilles, and C.A. Julio, Hydrometallurgy 117–118, 93. (2012).

    Google Scholar 

  20. W. Xiaohui, Z. Shili, X. Hongbin, and Z. Yi, Hydrometallurgy 98, 219. (2009).

    Article  Google Scholar 

  21. X. Tianyan, W. Lina, Q. Tao, C. Jinglong, Q. Jingkui, and L. Changhou, Hydrometallurgy 95, 22. (2009).

    Article  Google Scholar 

  22. F. Habashi, Extractive metallurgy of rare earths. Can. Metall. Q. 52, 224. (2013).

    Article  Google Scholar 

  23. G.M.A. Wahab, W.M. Abdellah, A.M. Yousif, and A.E. Mubark, Mining Metall. Explor. 2019, 1. (2019).

    Google Scholar 

  24. H. Zhou, S. Zheng, and Y. Zhang, Chin. J. Proc. Eng. 3, 2712. (2003).

    Google Scholar 

  25. E. Abdelgawad, J. Basic Envir. Sci., 7, (2020).

  26. M.A. Suélen, D.D. Michele, L.P.D. Tirzhá, J.J. Humberto, and F.P.M.M. Regina, Chem. Eng. J. 283, 388. (2016).

    Article  Google Scholar 

  27. S. Nagar, Introduction to MATLAB for Engineers and Scientists: Solutions for Numerical Computation and Modeling (Apress, New York, 2017).

    Book  Google Scholar 

  28. G. Oehlert, A first course in design and analysis of experiments (Freeman, New York, 2010).

    Google Scholar 

  29. S. Parirenyatwa, L. Escudero-Castejon, S. Sanchez-Segado, Y. Hara, and A. Jha, Hydrometallurgy 165, 213. (2016).

    Article  Google Scholar 

  30. A.J. Manhique, W.W. Focke, and C. Madivate, Hydrometallurgy 109, 230. (2011).

    Article  Google Scholar 

  31. R. Subagja, and A. Royani, Mater. Sci. Eng. 541, 1. (2019).

    Google Scholar 

  32. Y. Aristanti, Y.I. Supriyatna, N.P. Masduki, and S. Soepriyanto, Mater. Sci. Eng. 285, 1. (2018).

    Google Scholar 

  33. X. Wang, S. Zheng, H. Xu, and Y. Zhang, Hydrometallurgy 98, 219. (2009).

    Article  Google Scholar 

  34. R.J.F. da Silva, A.J.B. Dutra, and J.C. Afonso, Hydrometallurgy 117, 93. (2012).

    Article  Google Scholar 

  35. N.A. Mohammed, and A.M. Daher, Hydrometallurgy 65, 103. (2002).

    Article  Google Scholar 

  36. I. Tinoco, and W.S. Wang, Physical chemistry: principles and applications in biological sciences, 3rd edn. (Prentice Hall, Berkeley, 1995).

    Google Scholar 

  37. K. Connors, Chemical Kinetics: The Study of Reaction Rates in Solution (VCH, New York, 1990).

    Google Scholar 

  38. E. Abdelgawad, Nucl. Sci. Scie. J., 8 (2019).

  39. P. Atkins, and J. de Paula, Physical Chemistry, 8th edn. (Freeman, New York, 2006).

    Google Scholar 

  40. K.Y. Foo, and B.H. Hameed, Chem. Eng. J. 156, 2. (2010).

    Article  Google Scholar 

  41. P. Perrot, A to Z of Thermodynamics (Oxford University Press, New York, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal E. Mubark.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2862 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliwa, A.A., Gawad, E.A., Mubark, A.E. et al. Intensive Studies for Modeling and Thermodynamics of Fusion Digestion Processes of Abu Rusheid Mylonite Rocks. JOM 73, 3419–3429 (2021). https://doi.org/10.1007/s11837-021-04837-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04837-1

Navigation