Skip to main content
Log in

Effect of Conductive Circuits on Bonding Quality of Bimetallic Composite Roll Produced by Electroslag Remelting Cladding

  • Computational Modeling in Pyrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A 2D coupled electromagnetic-fluid-thermal analysis based on the Fluent software and the “User-Defined Functions” was performed to investigate the effects of conductive circuits on the bonding quality of a bimetallic composite roll produced by the electroslag remelting cladding (ESRC) process. Three typical conductive circuit schemes were designed and the distribution characteristics of physical fields were calculated and discussed. The results illustrated that the differences in the conductive circuits mainly affected the distributions of electric potential, current density, Joule heating, Lorentz force, flow velocity, and final temperatures in the slag pool, in turn. A high temperature in the slag pool always led to high temperatures at the bimetallic interface and slag/steel interface which determined the bonding quality of bimetals and the solidification quality of the composite layer. Finally, the conductive circuit of electrode → slag pool → total part of current supplying mold (abbreviation ESTM) was recommended, and a GCr15/45 steel composite billet with uniform bimetallic interface was produced by the ESRC process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Rao, S.J. Wang, J.H. Zhao, M.P. Geng, and G. Ding, J. Iron Steel Res. Int. 21, 869. (2014).

    Article  Google Scholar 

  2. M. Hashimoto, S. Otomo, K. Yoshida, K. Kimura, R. Kurahashi, T. Kawakami, and T. Kouga, ISIJ Int. 32, 1202. (1992).

    Article  Google Scholar 

  3. C.D. Zhou, J.F. Fan, H.R. Le, Y.J. Lin, D.S. Sun, and J.G. Zhang, Acta Metall. Sin. (Engl. Lett.) 17, 548. (2004).

    Google Scholar 

  4. G.J. Li, and M.J. Feng, J. Cent. South Univ. 21, 849. (2014).

    Article  Google Scholar 

  5. C.K. Kim, J.I. Park, S. Lee, Y.C. Kim, N.J. Kim, and J.S. Yang, Metall. Mater. Trans. A 36, 87. (2005).

    Article  Google Scholar 

  6. K. Goto, Y. Matsuda, K. Sakamoto, and Y. Sugimoto, ISIJ Int. 32, 1184. (1992).

    Article  Google Scholar 

  7. T. Kudo, S. Kawashima, and R. Kurahashi, ISIJ Int. 32, 1190. (1992).

    Article  Google Scholar 

  8. H.G. Fu, Y.H. Qu, J.D. Xing, X.H. Zhi, Z.Q. Jiang, M.W. Li, and Y. Zhang, J. Mater. Eng. Perform. 17, 535. (2008).

    Article  Google Scholar 

  9. K. Ichino, Y. Kataoka, and T. Koseki, Kawasaki Steel. Tech. Rep. 28, 13. (1997).

    Google Scholar 

  10. H.G. Fu, A.M. Zhao, J.D. Xing, and D.M. Fu, J. Iron Steel Res. Int. 9, 32. (2002).

    Google Scholar 

  11. M. Hashimoto, T. Tanake, T. Inoue, M. Yamashita, R. Kurahashi, and R. Terakado, ISIJ Int. 42, 982. (2002).

    Article  Google Scholar 

  12. M. Shimizu, O. Shitamura, S. Matsuo, T. Kamata, and Y. Kondo, ISIJ Int. 32, 1244. (1992).

    Article  Google Scholar 

  13. L.B. Medovar, A.K. Tsykulenko, V.Y. Saenko, A.V. Chernets, B.B. Fedorovskii, V.I. Us, and I.A. Lantsman, in Proceedings of Medovar Memorial Symposium, 49 (2001).

  14. G. Polishko, G. Stovpchenko, L. Medovar, and L. Kamkina, Ironmak. Steelmak. 46, 789. (2019).

    Article  Google Scholar 

  15. B.E. Paton, and L.B. Medovar, Steel in Translation 38, 1028. (2008).

    Article  Google Scholar 

  16. Y.W. Dong, L.C. Zheng, and Z.H. Jiang, Ironmak. Steelmak. 40, 153. (2013).

    Article  Google Scholar 

  17. Y.W. Dong, Z.H. Jiang, H.B. Cao, X. Wang, Y.L. Cao, and D. Hou, ISIJ Int. 56, 1386. (2016).

    Article  Google Scholar 

  18. Y.W. Dong, Z.W. Hou, Z.H. Jiang, H.B. Cao, Q.L. Feng, and Y.L. Cao, Metall. Mater. Trans. B 49, 349. (2018).

    Article  Google Scholar 

  19. Y.L. Cao, Z.H. Jiang, Y.W. Dong, X. Deng, L. Medovar, and G. Stovpchenko, ISIJ Int. 58, 1052. (2018).

    Article  Google Scholar 

  20. Y.L. Cao, Z.H. Jiang, Y.W. Dong, X. Deng, L. Medovar, and G. Stovpchenko, Metals 8, 390. (2018).

    Article  Google Scholar 

  21. K.C. Hwang, S. Lee, and H.C. Lee, Mater. Sci. Eng. A 254, 282. (1998).

    Article  Google Scholar 

  22. M. Hugo, B. Dussoubs, A. Jardy, J. Escaffre, and H. Poisson, in Proceedings of the 2013 International Symposium on Liquid Metal Processing and Casting, 79 (2013).

  23. Q. Wang, H. Cai, L.P. Pan, Z. He, S. Liu, and B.K. Li, JOM 68, 3143. (2016).

    Article  Google Scholar 

  24. Y.L. Cao, G.Q. Li, Z.H. Jiang, Y.W. Dong, Z.R. Zhao, and C.R. Niu, JOM 72, 3826. (2020).

    Article  Google Scholar 

  25. M. Choudhary, and J. Szekely, Metall. Trans. B 11, 439. (1980).

    Article  Google Scholar 

  26. A. Rückert, and H. Pfeifer, in 5th International Scientific Colloquium Modelling for Electromagnetic Processing, 29 (2008).

  27. X.H. Wang, Y. Li, C. Yan, B.Y. Ma, and J. Zeng, J. Manuf. Sci. Prod. 13, 73. (2013).

    Google Scholar 

  28. A.H. Dilawari, and J. Szekely, Metall. Trans. B 9, 77. (1978).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for financial support from the National Natural Science Foundation of China (52004188 and 51874084) and the China Postdoctoral Science Foundation (2019M652720).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwu Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Li, J., Li, G. et al. Effect of Conductive Circuits on Bonding Quality of Bimetallic Composite Roll Produced by Electroslag Remelting Cladding. JOM 73, 2973–2984 (2021). https://doi.org/10.1007/s11837-021-04833-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04833-5

Navigation