Skip to main content
Log in

Bidirectional Controlled Quantum Teleportation of Three-Qubit State by a New Entangled Eleven-Qubit State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, an improved controlled bidirectional quantum teleportation protocol of the special three-qubit state is proposed. In a little bit more detail, under the control of the third supervisor Charlie, Alice wants to send one special three-qubit entangled state to Bob, and at the meantime, Bob also wants to transmit another special three-qubit entangled state to Alice. In other words, both Alice and Bob can be the sender and receiver simultaneously. To achieve this aim, a specific eleven-qubit entangled state is shared among Alice, Bob and Charlie in advance acting as the quantum channel. Then, Alice and Bob first implement the GHZ-state measurement and Bell-state measurement respectively, and following Charlie’s single-qubit measurement. Finally, upon the foregoing measurement results, Alice and Bob can respectively implement the specific unitary operators on their local particles to recover the initial state transmitted by the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Yan, F., Wang, D.: Probabilistic and controlled teleportation of unknown quantum states. Phys. Lett. Sect. A Gen. At. Solid State Phys. 316, 297–303 (2003). https://doi.org/10.1016/j.physleta.2003.08.007

    Article  MathSciNet  MATH  Google Scholar 

  3. Gao, T.: Quantum logic networks for probabilistic and controlled teleportation of unknown quantum states*. Commun. Theor. Phys. 42, 223–228 (2004)

    Article  ADS  Google Scholar 

  4. Zhang, Z.J., Man, Z.X.: Many-agent controlled teleportation of multi-qubit quantum information. Phys. Lett. Sect. A Gen. At. Solid State Phys. 341, 55–59 (2005). https://doi.org/10.1016/j.physleta.2005.04.062

    Article  MATH  Google Scholar 

  5. Duan, Y.J., Zha, X.W.: Bidirectional quantum controlled teleportation via a six-qubit entangled state. Int. J. Theor. Phys. 53, 3780–3786 (2014). https://doi.org/10.1007/s10773-014-2131-8

    Article  MATH  Google Scholar 

  6. Fang, S., Hui, Jiang, M.: Bidirectional and Asymmetric Controlled Quantum Information Transmission via Five-qubit Brown State. Int. J. Theor. Phys. 56, 1530–1536 (2017). https://doi.org/10.1007/s10773-017-3292-z

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54, 269–272 (2015). https://doi.org/10.1007/s10773-014-2221-7

    Article  MATH  Google Scholar 

  8. Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12, 3835–3844 (2013). https://doi.org/10.1007/s11128-013-0638-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Sun, X.M., Zha, X.W.: A scheme of bidirectional quantum controlled teleportation via six-qubit maximally entangled state. Acta Photonica Sinica. 42(09), 1052–1056 (2013). https://doi.org/10.3788/gzxb20134209.1052

    Article  Google Scholar 

  10. Hong, W.Q.: Asymmetric Bidirectional Controlled Teleportation by using a Seven-qubit Entangled State. Int. J. Theor. Phys. 55, 384–387 (2016). https://doi.org/10.1007/s10773-015-2671-6

    Article  MATH  Google Scholar 

  11. Bolokian, M., Houshmand, M., Sadeghizadeh, M.S., Parvaneh, M.: Multi-party quantum teleportation with selective receiver. Int. J. Theor. Phys. 60, 828–837 (2021). https://doi.org/10.1007/s10773-020-04702-y

    Article  MathSciNet  Google Scholar 

  12. Zhou, R.G., Li, X., Qian, C., Ian, H.: Quantum bidirectional teleportation 2 ↔ 2 or 2 ↔ 3 qubit teleportation protocol via 6-qubit entangled state. Int. J. Theor. Phys. 59, 166–172 (2020). https://doi.org/10.1007/s10773-019-04306-1

    Article  MathSciNet  MATH  Google Scholar 

  13. Choudhury, B.S., Samanta, S.: Asymmetric bidirectional 3 ⇔ 2 qubit teleportation protocol between Alice and bob via 9-qubit cluster state. Int. J. Theor. Phys. 56, 3285–3296 (2017). https://doi.org/10.1007/s10773-017-3495-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Huo, G., Zhang, T., Zha, X., Zhang, X., Zhang, M.: Controlled asymmetric bidirectional quantum teleportation of two- and three-qubit states. Quantum Inf. Process. 20, 1–11 (2021). https://doi.org/10.1007/s11128-020-02956-3

    Article  MathSciNet  Google Scholar 

  15. Zhou, R.G., Qian, C., Xu, R.: A novel protocol for bidirectional controlled quantum teleportation of two-qubit states via seven-qubit entangled state in Noisy environment. Int. J. Theor. Phys. 59, 134–148 (2020). https://doi.org/10.1007/s10773-019-04302-5

    Article  MathSciNet  MATH  Google Scholar 

  16. Yuan, H., Pan, G., Zhu: Improving the Bidirectional Quantum Teleportation Scheme via Five-qubit Cluster State. Int. J. Theor. Phys. 59, 3387–3395 (2020). https://doi.org/10.1007/s10773-020-04595-x

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Y., Hua, Nie, Ping, L.: Bidirectional Controlled Teleportation by Using a Five-Qubit Composite GHZ-Bell State. Int. J. Theor. Phys. 52, 1630–1634 (2013). https://doi.org/10.1007/s10773-013-1484-8

    Article  MathSciNet  Google Scholar 

  18. Sang, M.H.: Bidirectional Quantum Controlled Teleportation by using a Seven-qubit Entangled State. Int. J. Theor. Phys. 55, 380–383 (2016). https://doi.org/10.1007/s10773-015-2670-7

    Article  MATH  Google Scholar 

  19. Zhou, R.G., Zhang, Y.N.: Bidirectional quantum controlled teleportation of three-qubit state by using GHZ states. Int. J. Theor. Phys. 58, 3594–3601 (2019). https://doi.org/10.1007/s10773-019-04223-3

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, D., Zha, X.W., Li, W., Yu, Y.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state. Quantum Inf. Process. 14, 3835–3844 (2015). https://doi.org/10.1007/s11128-015-1067-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Jiang, S.X., Zhou, R.G., Xu, R., Luo, G.: Cyclic hybrid Double-Channel quantum communication via bell-state and GHZ-state in Noisy environments. IEEE Access. 7, 80530–80541 (2019). https://doi.org/10.1109/ACCESS.2019.2923322

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shanghai Science and Technology Project in 2020 under Grant No. 20040501500.

Author information

Authors and Affiliations

Authors

Contributions

Ya-Li Jiang and Ri-Gui Zhou conceived the theory and designed the protocol. Ya-Li Jiang and WenWen Hu wrote the paper and comparisons analysis, Dao-You Hao helps check the manuscript.

Corresponding author

Correspondence to Ri-Gui Zhou.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 1 The collapsed states of qubits {B3, B4, a3, A2, B5, A3, A4, b3, B2, A5, C} under Alice’s and Bob’s GHZ-state measurement results
Table 2 On the base of that Alice’s and Bob’s GHZ-state measurement result are \( {\left|{\phi}^{+}\right\rangle}_{{\mathrm{a}}_1{\mathrm{a}}_2{\mathrm{A}}_1} \) and \( {\left|{\gamma}^{+}\right\rangle}_{{\mathrm{b}}_1{\mathrm{b}}_2{\mathrm{B}}_1} \) of Step 1 in subsection 2.2, the collapsed states of qubits {B3, B4, B5, A3, A4, A5, C} correspond to Alice’s and Bob’s Bell-state measurement results of Step 2 in subsection 2.2
Table 3 On the base of that Alice’s and Bob’s GHZ-state measurement result are \( {\left|{\phi}^{+}\right\rangle}_{{\mathrm{a}}_1{\mathrm{a}}_2{\mathrm{A}}_1} \) and \( {\left|{\gamma}^{+}\right\rangle}_{{\mathrm{b}}_1{\mathrm{b}}_2{\mathrm{B}}_1} \) of Step 1 in subsection 2.2, the specific unitary transformation employed to transmit collapsed states of qubits {B3, B4, B5, A3, A4, A5} into the desired state shown in Eq. (16) correspond to Alice’s and Bob’s Bell-states measurement results, and Charlie’s single-qubit measurement results

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, YL., Zhou, RG., Hao, DY. et al. Bidirectional Controlled Quantum Teleportation of Three-Qubit State by a New Entangled Eleven-Qubit State. Int J Theor Phys 60, 3618–3630 (2021). https://doi.org/10.1007/s10773-021-04935-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04935-5

Keywords

Navigation