Skip to main content
Log in

Cryptanalysis and Improvement in Multi-Party Quantum Key Distribution Protocol with New Bell States Encoding Mode

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Ma et al. [Int. J. Theor. Phys. (2021): 1328–1338] proposed a multi-party quantum key distribution (MQKD) protocol using Bell states, in which multiple participants can distribute a group key efficiently. However, this study indicates that Ma et al.’s protocol has two security loopholes. First, an attacker can obtain the pre-shared key Ks using an eavesdropping attack. Second, the attacker uses an intercept-and-resend attack to steal the group key shared among the participants without being detected. An improved MQKD protocol is proposed to overcome these loopholes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: "Quantum Cryptography: Public Key Distribution and Coin Tossing," in IEEE International Conference on Computers, pp. 175–179. Systems and Signal Processing, Bangalore (1984)

    Google Scholar 

  2. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81(14), 3018–3021 (1998)

    Article  ADS  Google Scholar 

  6. Scarani, V., Acín, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92(5), 057901 (2004)

    Article  ADS  Google Scholar 

  7. Lucamarini, M., Patel, K.A., Dynes, J.F., Fröhlich, B., Sharpe, A.W., Dixon, A.R., Yuan, Z.L., Penty, R.V., Shields, A.J.: Efficient decoy-state quantum key distribution with quantified security. Opt. Express. 21(21), 24550–24565 (2013)

    Article  ADS  Google Scholar 

  8. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A. 79(3), 032341 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. Liu, Z.-R., Hwang, T.: Mediated semi-quantum key distribution without invoking quantum measurement. Ann. Phys. 530(4), 1700206 (2018)

    Article  MathSciNet  Google Scholar 

  11. Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A. 79(5), 052312 (2009)

    Article  ADS  Google Scholar 

  12. Branciard, C., Cavalcanti, E.G., Walborn, S.P., Scarani, V., Wiseman, H.M.: One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A. 85(1), 010301 (2012)

    Article  ADS  Google Scholar 

  13. Cao, W.-F., Zhen, Y.-Z., Zheng, Y.-L., Li, L., Chen, Z.-B., Liu, N.-L., Chen, K.: One-sided measurement-device-independent quantum key distribution. Phys. Rev. A. 97(1), 012313 (2018)

    Article  ADS  Google Scholar 

  14. Tomamichel, M., Fehr, S., Kaniewski, J., Wehner, S.: One-Sided Device-Independent QKD and Position-Based Cryptography from Monogamy Games, pp. 609–625. Heidelberg, Berlin (2013)

    MATH  Google Scholar 

  15. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  16. Xu, F., Curty, M., Qi, B., Lo, H.: Measurement-device-independent quantum cryptography. IEEE J Sel Top Quant. 21(3), 148–158 (2015)

    Article  Google Scholar 

  17. Phoenix, S.J.D., Barnett, S.M., Townsend, P.D., Blow, K.J.: Multi-user quantum cryptography on optical networks. J Mod Optic. 42(6), 1155–1163 (1995)

    Article  ADS  Google Scholar 

  18. Matsumoto, R.: Multiparty quantum-key-distribution protocol without use of entanglement. Phys. Rev. A. 76(6), 062316 (2007)

    Article  ADS  Google Scholar 

  19. Hong, C.H., Heo, J.O., Khym, G.L., Lim, J., Hong, S.-K., Yang, H.J.: N quantum channels are sufficient for multi-user quantum key distribution protocol between n users. Opt. Commun. 283(12), 2644–2646 (2010)

    Article  ADS  Google Scholar 

  20. Jiang, M., Dong, D.: Multi-party quantum state sharing via various probabilistic channels. Quantum Inf. Process. 12, 237–249 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Li, L., Li, Z.: A multi-party quantum key distribution protocol based on phase shift operation. Laser Phys. 29(10), 105201 (2019)

    Article  ADS  Google Scholar 

  22. Ma, X., Wang, C., Li, Z., Zhu, H.: Multi-party quantum key distribution protocol with new bell states encoding mode. Int. J. Theor. Phys. 60(4), 1328–1338 (2021)

    Article  MathSciNet  Google Scholar 

  23. Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public discussion. SIAM J. Comput. 17(2), 210–229 (1988)

    Article  MathSciNet  Google Scholar 

  24. Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory. 41(6), 1915–1923 (1995)

    Article  MathSciNet  Google Scholar 

  25. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18(2), 143–154 (1979)

    Article  MathSciNet  Google Scholar 

  26. Abidin, A., "Authentication in Quantum Key Distribution: Security Proof and Universal Hash Functions," Doctoral Thesis, Comprehensive Summary, Linköping Studies in Science and Technology. Dissertations, Linköping University Electronic Press, Linköping, 2013

Download references

Acknowledgments

We would like to thank the anonymous reviewers and the editor for their very valuable comments, which greatly enhanced the clarity of this paper. This research was partially supported by the Ministry of Science and Technology, Taiwan, R.O.C. (Grant Nos. MOST 110-2221-E-039-004, MOST 110-2221-E-143-003, MOST 110-2221-E-259-001, MOST 110-2221-E-143-004, and MOST 110-2218-E-005-008-MBK), and China Medical University, Taiwan (Grant No. CMU109-S-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Wei Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CW., Lin, J., Chiu, L. et al. Cryptanalysis and Improvement in Multi-Party Quantum Key Distribution Protocol with New Bell States Encoding Mode. Int J Theor Phys 60, 3599–3608 (2021). https://doi.org/10.1007/s10773-021-04927-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04927-5

Keywords

Navigation