Skip to main content
Log in

A New Method of Fractional Dynamics, I.E., Fractional Generalized Hamilton Method with Additional Terms, and its Applications to Physics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

How to construct the fractional dynamical model is one of the most basic problems in fractional dynamics. However, for a long time, a large number of fractional differential equations of motion have been written directly by hand based on integer-order differential equations of motion. In this paper, we establish a new kind of fractional generalized Hamilton equation, and propose a new method to construct the fractional dynamical model, i.e. the fractional generalized Hamilton method with additional terms. As applications of the new method, we construct a series of new fractional dynamical models, which include a family of fractional Micro-electromechanical system (MEMS) with time-varying capacitance, a family of fractional Fokker-Planck model, two kinds of fractional Euler dynamical models of rigid body rotating around a fixed-point, three different kinds of fractional Van der Pol oscillator models and seven different kinds of fractional Duffing oscillator models. The successful construction of these models verifies the effectiveness and actual application value of the fractional generalized Hamilton method with additional terms. The work in this paper is of fundamental significance to the study of fractional dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo, S.K., Li, L.: Fractional generalized Hamiltonian mechanics and Poisson conservation law in terms of combined Riesz derivatives. Nonlinear Dyn. 73, 639–647 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Li, L., Luo, S.K.: Fractional generalized Hamiltonian mechanics. Acta. Mech. 224, 1757–1771 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Luo, S.K., Zhang, X.T., He, J.M., Xu, Y.L.: On the families of fractional dynamical models. Acta. Mech. 228, 3741–3754 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Luo, S.K., Li, L.: Fractional generalized Hamiltonian equations and its integral invariants. Nonlinear Dyn. 73, 339–346 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Xu, Y.L., Luo, S.K.: Stability for manifolds of equilibrium state of fractional generalized Hamiltonian systems. Nonlinear Dyn. 76, 657–672 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Luo, S.K., He, J.M., Xu, Y.L.: A new method of dynamical stability, i.e. fractional generalized Hamiltonian method, and its applications. Appl. Math. Comp. 269, 77–86 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Luo, S.K., He, J.M., Xu, Y.L., Zhang, X.T.: Fractional generalized Hamilton method for equilibrium stability of dynamical systems. Appl. Math. Lett. 60, 14–20 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Luo, S.K., Li, L., Xu, Y.L.: Lie algebraic structure and generalized Poisson conservation law for fractional generalized Hamiltonian systems. Acta Mech. 225, 2653–2666 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Luo, S.K., Dai, Y., Zhang, X.T., He, J.M.: A new method of fractional dynamics, i.e., fractional Mei symmetrical method for finding conserved quantity, and its applications to physics. Int. J. Theor. Phys. 55, 4298–4309 (2016)

    Article  MATH  Google Scholar 

  10. Zhang, X.T., He, J.M., Luo, S.K.: A new type of fractional lie symmetrical method and its applications. Int. J. Theor. Phys. 56, 971–990 (2017)

    Article  ADS  MATH  Google Scholar 

  11. Luo, S.K., Dai, Y., Yang, M.J., Zhang, X.T.: Basic theory of fractional conformal invariance of Mei symmetry and its applications to physics. Int. J. Theor. Phys. 57, 1024–1038 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Luo, S.K., Yang, M.J., Zhang, X.T., Dai, Y.: Basic theory of fractional Mei symmetrical perturbation and its applications. Acta Mech. 229, 1833–1848 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Luo, S.K., Xu, Y.L.: Fractional Lorentz-Dirac model and its dynamical behaviors. Int. J. Theor. Phys. 54, 572–581 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luo, S.K., He, J.M., Xu, Y.L., Zhang, X.T.: Fractional relativistic Yamaleev oscillator model and its dynamical behaviors. Found. Phys. 46, 776–786 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Xu, Y.L., Luo, S.K.: Fractional Nambu dynamics. Acta Mech. 226, 3781–3793 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Luo, S.K., Zhang, X.T., He, J.M.: A general method of fractional dynamics, i.e., fractional Jacobi last multiplier method, and its applications. Acta. Mech. 228, 157–174 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Luo, S.K., Xu, Y.L.: Fractional Birkhoffian mechanics. Acta Mech. 226, 829–844 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yang, M.J., Luo, S.K.: Fractional symmetrical perturbation method of finding adiabatic invariants of disturbed dynamical systems. Int. J. Non–Linear Mech. 101(5), 16–25 (2018)

    Article  ADS  Google Scholar 

  19. Luo, S.K., He, J.M., Xu, Y.L.: Fractional Birkhoffian method for equilibrium stability of dynamical systems. Int. J. Non–Linear Mech. 78, 105–111 (2016)

    Article  ADS  Google Scholar 

  20. Luo, S.K., Dai, Y., Zhang, X.T., Yang, M.J.: Fractional conformal invariance method for finding conserved quantities of dynamical systems. Int. J. Non-Linear Mech. 97, 107–114 (2017)

    Article  ADS  Google Scholar 

  21. He, J.M., Xu, Y.L., Luo, S.K.: Stability for manifolds of equilibrium state of fractional Birkhoffian systems. Acta Mech. 226, 2135–2146 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Feng, K.: On Difference Schemes and Symplectic Geometry. Science Press, Beijing (1985)

    MATH  Google Scholar 

  23. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    Book  MATH  Google Scholar 

  24. Li, J.B., Zhao, X.H., Liu, Z.R.: Theory and Application of the Generalized Hamilton Systems. Science Press, Beijing (1994)

    Google Scholar 

  25. Zhong, W.X.: Duality System in Applied Mechanics. Science Press, Beijing (2002)

    Google Scholar 

  26. Zhu, W.Q.: Dynamics and Control of Nonlinear Stochastic System: Hamilton Theory System Frame. Science Press, Beijing (2003)

    Google Scholar 

  27. Luo, S.K., Zhang, Y.F.: Advances in the Study of Dynamics of Constrained System. Science Press, Beijing (2008)

    Google Scholar 

  28. Chen, X.W.: Global Analysis for Birkhoff Systems. Henan University Press, Kaifeng (2002)

    Google Scholar 

  29. Luo, S.K., Li, Z.J., Li, L.: A new lie symmetrical method of finding a conserved quantity for a dynamical system in phase space. Acta Mech. 223, 2621–2632 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen, D.Z., Xi, Z.R., Lu, Q., Mei, S.W.: Geometric structure of general Hamiltonian control system and its application. Sci. China Ser. E. 30, 341–354 (2000)

    Google Scholar 

  31. Zhang, S.Y., Deng, Z.C.: An algorithm for preserving structure of generalized Hamilton system. Chin. J. Comput. Mech. 22, 47–50 (2005)

    Google Scholar 

  32. Zhang, F., Li, W., Zhang, Y.Y., Xue, X.C., Jia, L.Q.: Conformal invariance and Mei conserved quantity for generalized Hamilton systems with additional terms. Nonlinear Dyn. 84, 1909–1913 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jia, L.Q., Zheng, S.W.: Mei symmetry of generalized Hamilton systems with additional terms. Acta Phys. Sin. 55, 3829–3832 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Jiang, W.A., Luo, S.K.: Mei symmetry leading to Mei conserved quantity of generalized Hamilton systems. Acta Phys. Sin. 60, 060201 (2011)

    MATH  Google Scholar 

  35. Jiang, W.A., Luo, S.K.: Stability for manifolds of equilibrium states of generalized Hamiltonian system. Meccanica. 47, 379–383 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jiang, W.A., Luo, S.K.: A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems. Nonlinear Dyn. 67, 475–482 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Luo, S.K., Li, Z.J., Peng, W., Li, L.: A lie symmetrical basic integral variable relation and a new conservation law for generalized Hamiltonian systems. Acta Mech. 224, 71–84 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Agrawal, O.P., Muslih, S.I., Baleanu, D.: Generalized variational calculus in terms of multi-parameters fractional derivatives. Commun. Nonlinear Sci. Numer. Simulat. 16, 4756–4767 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Feynman, R.P.: There’s plenty of room at the bottom. Resonance. 16(9), 890–905 (2011)

    Article  Google Scholar 

  40. Feynman, R.: Infinitesimal machinery. J. Microelectromech. S. 2, 4–14 (2002)

    Article  Google Scholar 

  41. Nathanson, H.C., Newell, W.E., Wickstrom, R.A., et al.: The resonant gate transistor. IEEE Trans. Electron. Devices. 14, 117–133 (1967)

    Article  ADS  Google Scholar 

  42. Luo, C.J., Wang, F.Y.: Nonlinear dynamics of a micro-electro-mechanical system with time-varying capacitors. J. Vib. Acoust. 126, 77 (2004)

    Article  Google Scholar 

  43. Risken, H., Caugheyz, T.K.: The Fokker-Planck equation: methods of solution and application, 2nd ed. J. Appl. Mech. 58, 860 (1991)

    Article  ADS  Google Scholar 

  44. Elhanbaly, A.: Classification of the similarity solutions of the Fokker–Planck equation in an external potential. Public Health Nutr. 18, 1670–1674 (2015)

    Article  Google Scholar 

  45. Cicogna, G., Vitali, D.: Classification of the extended symmetries of Fokker-Planck eqsuations. J. Phys. A Gen. Phys. 23, 2440–2449 (1990)

    MATH  Google Scholar 

  46. Spichak, S., Stognii, V.: Symmetry classification and exact solutions of the one-dimensional Fokker-Planck equation with arbitrary coefficients of drift and diffusion. J. Phys. A Gen. Phys. 32, 8341 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Qin, M.C., Mei, F.X.: Nonclassical potential symmetry group and new explicit solution of Fokker-Planck equation. J. Dyn. Control. 02, 103–108 (2006)

    Google Scholar 

  48. Vincent, T.C.: The method of averaging for Euler’s equations of rigid body motion. Nonlinear Dyn. 14, 295 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  49. Van, D.: Theory of the amplitude of free and forced triode vibrations. Radio Rev. 1, 701 (1920)

    Google Scholar 

  50. Van, D.: Forced oscillations in a circuit with nonlinear resistance. Lond. Edinb. Dublin Phil. Mag. 3, 65, (1927)

  51. Mickens, R.E., Oyedeji, K., Rucker, S.A.: Preliminary analytical and numerical investigations of a van der Pol type oscillator having discontinuous dependence on the velocity. J. Sound Vib. 279, 519–523 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Atay, F.M.: Van der Pol’s oscillator under delayed feedback. J. Sound Vib. 218, 333–339 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Davis, R.T., Alfriend, K.T.: Solutions to Van der Pol’s equation using a perturbation method. Int. J. Non-linear Mech. 2, 153–162 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kao, Y.H., Wang, C.S.: Analog study of bifurcation structures in a Van der Pol oscillator with a nonlinear restoring force. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 48, 2514–2520 (1993)

    Google Scholar 

  55. Holmes, P.J., Rand, D.A.: Bifurcations of the forced van der Pol oscillator. Q. Appl. Math. 35, 495–509 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  56. Mickens, R.E.: Fractional van der pol equations. J. Sound Vib. 259, 457–460 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Letellier, C., Messager, V., Gilmore, R.: From quasiperiodicity to toroidal chaos: Analogy between the Curry-Yorke map and the van der Pol system. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 77, 046203 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  58. Jiang, W.W.: Stability and bifurcation analysis in Van der Pol’s oscillator with delayed feedback. J. Sound Vib. 283, 801 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Leung, A., Guo, Z., Yang, H.X.: Fractional derivative and time delay damper characteristics in Duffing-van der Pol oscillators. Commun. Nonlinear Sci. 18, 2900–2915 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Duffing, G.: Erzwungene Schwingungen bei Veränderlicher Eigenfrequenz und ihre Technische Bedeutung. (1918)

  61. Chen, Y.F., Zheng, J.H., Wu, X.Y., Wang, J.: On high-accuracy approximate solution of undamped Duffing equation. Mech. Science Technol. Aerospace Eng. 27, 1591–1594 (2008)

    Google Scholar 

  62. Ueda, Y.: Random phenomena resulting from non-linearity in system described by Duffing’s equation. Int. J. Non-linear Mech. 73, 481–491 (1985)

    Article  Google Scholar 

  63. Luo, A.C.J., Huang, J.Z.: Analytical solutions for asymmetric periodic motions to chaos in a hardening Duffing oscillator. Nonlinear Dyn. 72, 417–438 (2013)

    Article  MathSciNet  Google Scholar 

  64. Sato, S., Sano, M., Sawada, Y.: Universal scaling property in bifurcation structure of Duffing’s and generalized Duffing’s equation. Phys. Rev. A. 28, 1654–1658 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  65. Parlitz, U., Lauterborn, W.: Superstructure in the bifurcation set of the Duffing equation. Phys. Lett. A. 103, 351–355 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  66. Beltrán-Carbajal, F., Silva-Navarro, G.: Active vibration control in Duffing mechanical systems using dynamic vibration absorbers. J. Sound Vib. 333, 3019–3030 (2014)

    Article  ADS  Google Scholar 

  67. Kim, Y., Lee, S.Y., Kim, S.Y.: Experimental observation of dynamic stabilization in a double-well Duffing oscillator. Phys. Lett. A. 275, 254–259 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Jin, Y.F., Hu, H.Y.: Dynamics of a Duffing oscillator with two time delays in feedback control under narrow-band random excitation. J. Comput. Nonlinear Dyn. 6, 021205 (2008)

    Article  Google Scholar 

  69. He, G.T., Luo, M.K.: Dynamic behavior of fractional order Duffing chaotic system and its synchronization via singly active control. Appl. Math. Mech. 33, 567 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  70. Chen, L.C., Zhu, W.Q.: Stochastic stability of Duffing oscillator with fractional derivative damping under combined harmonic and white noise parametric excitations. Acta Mech. 207, 109–120 (2009)

    Article  MATH  Google Scholar 

  71. Siewe, M.S., Tchawoua, C., Woafo, P.: Melnikov chaos in a periodically driven Rayleigh– Duffing oscillator. Mech. Res. Commun. 37, 363–368 (2010)

    Article  MATH  Google Scholar 

  72. Tang, K.S., Man, K.F., Zhong, G.Q., et al.: Generating chaos via x|x|. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 48, 636–641 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  73. Zhang, Y.L., Luo, M.K.: Fractional Rayleigh–Duffing-like system and its synchronization. Nonlinear Dyn. 70, 1173–1183 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shao-Kai Luo or Jin-Man He.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, SK., Xin, B. & He, JM. A New Method of Fractional Dynamics, I.E., Fractional Generalized Hamilton Method with Additional Terms, and its Applications to Physics. Int J Theor Phys 60, 3578–3598 (2021). https://doi.org/10.1007/s10773-021-04871-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04871-4

Keywords

Navigation