Skip to main content
Log in

Evaluation of Efficiency of Electrically Assisted Rapid Annealing Compared to Rapid Induction Heat Treatment

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

The athermal effect of electric current during electrically assisted (EA) annealing, which is a simple and cost-effective heat treatment technique, is assessed by comparing the performances of EA annealing and induction heat treatment (IHT), using aluminum alloy specimens with a high dislocation density from cold rolling. The dislocation densities after EA annealing and IHT are calculated using X-ray diffraction data to compare the performance of the processes. The performance of EA annealing clearly surpasses that of IHT in a certain temperature range. However, at higher temperatures, the thermal effect alone is able to induce nearly complete annihilation of dislocation density, thus, the practical advantage of EA annealing may diminish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nguyen-Tran, H.-D., Oh, H.-S., Hong, S.-T., Han, H. N., Cao, J., Ahn, S.-H., & Chun, D.-M. (2015). A review of electrically-assisted manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 2, 365–376. https://doi.org/10.1007/s40684-015-0045-4

    Article  Google Scholar 

  2. Ng, M.-K., Fan, Z., Gao, R. X., Smith, E. F., & Cao, J. (2014). Characterization of electrically-assisted micro-rolling for surface texturing using embedded sensor. CIRP Annals, 63(1), 269–272. https://doi.org/10.1016/j.cirp.2014.03.021

    Article  Google Scholar 

  3. Ng, M.-K., Li, L., Fan, Z., Gao, R. X., Smith, E. F., Ehmann, K. F., & Cao, J. (2015). Joining sheet metals by electrically-assisted roll bonding. CIRP Annals, 64(1), 273–276. https://doi.org/10.1016/j.cirp.2015.04.131

    Article  Google Scholar 

  4. Oh, H.-S., Cho, H.-R., Park, H., Hong, S.-T., & Chun, D.-M. (2016). Study of electrically-assisted indentation for surface texturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 161–165. https://doi.org/10.1007/s40684-016-0020-8

    Article  Google Scholar 

  5. Thien, N. T., Jeong, Y.-H., Hong, S.-T., Kim, M.-J., Han, H. N., & Lee, M.-G. (2016). Electrically assisted tensile behavior of complex phase ultra-high strength steel. International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 325–333. https://doi.org/10.1007/s40684-016-0041-3

    Article  Google Scholar 

  6. Hong, S.-T., Li, Y.-F., Park, J.-W., & Han, H. N. (2018). Effectiveness of electrically assisted solid-state pressure joining using an additive manufactured porous interlayer. CIRP Annals, 67(1), 297–300. https://doi.org/10.1016/j.cirp.2018.04.062

    Article  Google Scholar 

  7. Li, Y.-F., Das, H., Hong, S.-T., Park, J.-W., & Han, H. N. (2018). Electrically assisted pressure joining of titanium alloys. Journal of Manufacturing Processes, 35, 681–686. https://doi.org/10.1016/j.jmapro.2018.09.015

    Article  Google Scholar 

  8. Luu, V. T., Dinh, T. K. A., Das, H., Kim, J.-R., Hong, S.-T., Sung, H.-M., & Han, H. N. (2018). Diffusion enhancement during electrically assisted brazing of ferritic stainless steel alloys. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 613–621. https://doi.org/10.1007/s40684-018-0063-0

    Article  Google Scholar 

  9. Jeong, H.-J., Park, J.-W., Jeong, K. J., Hwang, N. M., Hong, S.-T., & Han, H. N. (2019). Effect of pulsed electric current on TRIP-aided steel. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 315–327. https://doi.org/10.1007/s40684-019-00060-1

    Article  Google Scholar 

  10. Dinh, K.-A., Hong, S.-T., Choi, S.-J., Kim, M.-J., & Han, H. N. (2020). The effect of pre-strain and subsequent electrically assisted annealing on the mechanical behaviors of two different aluminum alloys. International Journal of Precision Engineering and Manufacturing, 21, 2345–2358. https://doi.org/10.1007/s12541-020-00424-7

    Article  Google Scholar 

  11. Kim, M.-J., Yoon, S., Park, S., Jeong, H.-J., Park, J.-W., Kim, K., Jo, J., Heo, T., Hong, S.-T., Cho, S. H., Kwon, Y.-K., Choi, I.-S., Kim, M., & Han, H. N. (2020). Elucidating the origin of electroplasticity in metallic materials. Applied Materials Today. https://doi.org/10.1016/j.apmt.2020.100874

    Article  Google Scholar 

  12. Kim, M.-J., Lee, K., Oh, K. H., Choi, I.-S., Yu, H.-H., Hong, S.-T., & Han, H. N. (2014). Electric current-induced annealing during uniaxial tension of aluminum alloy. Scripta Materialia, 75, 58–61. https://doi.org/10.1016/j.scriptamat.2013.11.019

    Article  Google Scholar 

  13. Park, G. D., Tran, V. L., Hong, S.-T., Jeong, Y.-H., Yeo, T. S., Nam, M. J., Kim, M.-J., Jin, S.-W., & Han, H. N. (2017). Electrically assisted stress relief annealing of automotive springs. Journal of Mechanical Science and Technology, 31, 3943–3948. https://doi.org/10.1007/s12206-017-0740-x

    Article  Google Scholar 

  14. Liu, K., Dong, X.-H., & Shi, W. (2019). Effect of pulsed current on AZ31B magnesium sheets during annealing. Transactions of Nonferrous Metals Society of China, 29(4), 735–740. https://doi.org/10.1016/S1003-6326(19)64983-6

    Article  Google Scholar 

  15. Guan, L., Tang, G., & Chu, P. K. (2011). Recent advances and challenges in electroplastic manufacturing processing of metals. Journal of Materials Research, 25(7), 1215–1224. https://doi.org/10.1557/JMR.2010.0170

    Article  Google Scholar 

  16. Conrad, H. (2000). Electroplasticity in metals and ceramics. Materials Science and Engineering: A, 287(2), 276–287. https://doi.org/10.1016/S0921-5093(00)00786-3

    Article  MathSciNet  Google Scholar 

  17. Magargee, J., Morestin, F., & Cao, J. (2013). Characterization of flow stress for commercially pure titanium subjected to electrically-assisted deformation. Journal of Engineering Materials and Technology, 135(4), 041003. https://doi.org/10.1115/1.4024394

    Article  Google Scholar 

  18. Roh, J.-H., Seo, J.-J., Hong, S.-T., Kim, M.-J., Han, H. N., & Roth, J. T. (2014). The mechanical behavior of 5052–H32 aluminum alloys under a pulsed electric current. International Journal of Plasticity, 58, 84–99. https://doi.org/10.1016/j.ijplas.2014.02.002

    Article  Google Scholar 

  19. Hariharan, K., Lee, M.-G., Kim, M.-J., Han, H. N., Kim, D., & Choi, S. (2015). Decoupling thermal and electrical effect in an electrically assisted uniaxial tensile test using finite element analysis. Metallurgical and Materials Transactions A, 46, 3043–3051. https://doi.org/10.1007/s11661-015-2879-3

    Article  Google Scholar 

  20. Ghiotti, A., Bruschi, S., Simonetto, E., Gennari, C., Calliari, I., & Bariani, P. (2018). Electroplastic effect on AA1050 aluminium alloy formability. CIRP Annals, 67(1), 289–292. https://doi.org/10.1016/j.cirp.2018.04.054

    Article  Google Scholar 

  21. Park, S., Kim, D.-W., Kim, J.-H., Lee, S. Y., Kwon, D., & Han, H. N. (2020). A finite element simulation for induction heat treatment of automotive drive shaft. ISIJ International, 60(6), 1333–1341. https://doi.org/10.2355/isijinternational.ISIJINT-2019-466

    Article  Google Scholar 

  22. Enzo, S., Fagherazzi, G., Benedetti, A., & Polizzi, S. (1988). A profile-fitting procedure for analysis of broadened X-ray diffraction peaks I. Methodology. Journal of Applied Crystallography, 21, 536–542. https://doi.org/10.1107/S0021889888006612

    Article  Google Scholar 

  23. Ida, T., Ando, M., & Toraya, H. (2000). Extended pseudo-Voigt function for approximating the Voigt profile. Journal of Applied Crystallography, 33, 1311–1316. https://doi.org/10.1107/S0021889800010219

    Article  Google Scholar 

  24. Williamson, G. K., & Hall, W. H. (1953). X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica, 1(1), 22–31. https://doi.org/10.1016/0001-6160(53)90006-6

    Article  Google Scholar 

  25. Ungár, T. (2004). Microstructural parameters from X-ray diffraction peak broadening. Scripta Materialia, 51(8), 777–781. https://doi.org/10.1016/j.scriptamat.2004.05.007

    Article  Google Scholar 

  26. Ungár, T., Ott, S., Sanders, P. G., Borbély, A., & Weertman, J. R. (1998). Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis. Acta Materialia, 46(10), 3693–3699. https://doi.org/10.1016/S1359-6454(98)00001-9

    Article  Google Scholar 

  27. Oh, Y., Kwak, N., Lee, K., Ko, W.-S., & Han, H. N. (2019). Ductility enhancement of tungsten after plastic deformation. Journal of Alloys and Compounds, 787, 801–814. https://doi.org/10.1016/j.jallcom.2019.02.097

    Article  Google Scholar 

  28. Williamson, G. K., & Smallman, R. E. (1956). III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philosophical Magazine, 1(1), 34–46. https://doi.org/10.1080/14786435608238074

    Article  Google Scholar 

  29. Liu, K., Dong, X., Xie, H., & Peng, F. (2015). Effect of pulsed current on the deformation behavior of AZ31B magnesium alloy. Materials Science and Engineering: A, 623, 97–103. https://doi.org/10.1016/j.msea.2014.11.039

    Article  Google Scholar 

  30. Park, J.-W., Jeong, H.-J., Jin, S.-W., Kim, M.-J., Lee, K., Kim, J. J., Hong, S.-T., & Han, H. N. (2017). Effect of electric current on recrystallization kinetics in interstitial free steel and AZ31 magnesium alloy. Materials Characterization, 133, 70–76. https://doi.org/10.1016/j.matchar.2017.09.021

    Article  Google Scholar 

  31. Jeong, H.-J., Kim, M.-J., Choi, S.-J., Park, J.-W., Choi, H., Luu, V. T., Hong, S.-T., & Han, H. N. (2020). Microstructure reset-based self-healing method using sub-second electric pulsing for metallic materials. Applied Materials Today. https://doi.org/10.1016/j.apmt.2020.100755

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grants funded by the Korean government (MSIT) (2019R1A2C2009939; 2020R1A5A6017701). H. Choi has been supported by POSCO Science Fellowship of POSCO TJ Park Foundation. The Institute of Engineering Research at Seoul National University also provided research facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung-Tae Hong or Heung Nam Han.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.A.N., Choi, H., Kim, MJ. et al. Evaluation of Efficiency of Electrically Assisted Rapid Annealing Compared to Rapid Induction Heat Treatment. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 485–492 (2022). https://doi.org/10.1007/s40684-021-00382-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00382-z

Keywords

Navigation