Skip to main content
Log in

Interval Type-2 Fuzzy Vendor Managed Inventory System and Its Solution with Particle Swarm Optimization

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The vendor managed inventory (VMI) is the most commonly known marketing and distribution methodology among the service provider and the retailer in a supply chain environment. The VMI framework's critical feature is to satisfy the demand of the products or items by the supplier rapidly generated from the retailers with the number of orders (order quantities). Due to the business's changing conditions, necessities of the particular product, production cycle, and manufacturing expenses, the VMI system's demand and order quantity are highly uncertain. Therefore, the total cost of a VMI system possesses higher-order uncertainties for a real-world scenario. This paper proposes a novel interval type-2 fuzzy vendor managed inventory (IT2FVMI) system, in which demand and order quantity are represented by the interval type-2 fuzzy numbers. The proposed IT2FVMI model aims to minimize the overall cost for the single vendor-retailer business, merchandise of multi-product, and a centralized warehouse of retailers' inventory managed by the vendor. Since the proposed model is an NP-hard, a particle swarm optimization (PSO) based solution approach is developed for solving it appropriately. Moreover, we have also formulated the classical/crisp VMI model and type-1 fuzzy vendor managed inventory (T1FVMI) model via considering demand and order quantity as the deterministic and the type-1 fuzzy numbers, respectively. The proposed solution technique is capable of solving both crisp VMI and T1FVMI problems. An appropriate real-world application is considered to conduct experimental simulations for the five test problems that displayed the various situations, and the minimum costs of the models are obtained. All the three models are thoroughly analyzed, and from comparison, it is demonstrated that the proposed IT2FVMI model outperforms both T1FVMI and crisp VMI models by providing a more trustworthy solution in terms of minimum cost, statistical analysis, and significantly faster convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pasandideh, S.H.R., Niaki, S.T.A., Nia, A.R.: A genetic algorithm for vendor managed inventory control system of multi-product multi-constraint economic order quantity model. Expert Syst Appl 38, 2708–2716 (2011). https://doi.org/10.1016/j.eswa.2010.08.060

    Article  Google Scholar 

  2. Cetinkaya, S., Lee, C.Y.: Stock Replenishment and Shipment Scheduling for Vendor-Managed Inventory Systems. Manage Sci 46, 217–232 (2000)

    Article  Google Scholar 

  3. Dong, Y., Xu, K.: A supply chain model of vendor managed inventory. Transp Res Part E Logist Transp Rev 38, 75–95 (2002). https://doi.org/10.1016/S1366-5545(01)00014-X

    Article  Google Scholar 

  4. Harris, F.W.: How many parts to make at once author. Factory Mag Manag 10, 135–136 (1913)

    Google Scholar 

  5. Taft, E.: The most economical production lot. Iron Age 101, 1410–1412 (1918)

    Google Scholar 

  6. Ashraf, Z., Malhotra, D., Muhuri, P.K., Danish Lohani, Q.M.: Interval type-2 fuzzy demand based vendor managed inventory model. In: IEEE International Conference on Fuzzy Systems (2017)

  7. Sadeghi, J., Sadeghi, A., Saidi-Mehrabad, M.: A parameter-tuned genetic algorithm for vendor managed inventory model for a case single-vendor single-retailer with multi-product and multi-constraint. J. Optim. Ind. Eng. 9, 57–67 (2011)

    Google Scholar 

  8. Petrovic, D., Sweeney, E.: Fuzzy knowledge-based approach to treating uncertainty in inventory control. Comput. Integr. Manuf. Syst. 7, 147–152 (1994). https://doi.org/10.1016/0951-5240(94)90033-7

    Article  Google Scholar 

  9. Chang, S.C., Yao, J.S., Lee, H.M.: Economic reorder point for fuzzy backorder quantity. Eur. J. Oper. Res. 109, 183–202 (1998). https://doi.org/10.1016/S0377-2217(97)00069-6

    Article  MATH  Google Scholar 

  10. Lee, H.M., Yao, J.S.: Economic order quantity in fuzzy sense for inventory without backorder model. Fuzzy Sets Syst. 105, 13–31 (1999). https://doi.org/10.1016/S0165-0114(97)00227-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Yao, J., Lee, H.: Fuzzy inventory with or without backorder for fuzzy order. Fuzzy Sets Syst 105, 311–337 (1999)

    Article  Google Scholar 

  12. Yao, J., Lee, H.: Fuzzy Inventory with Baekorder for fuzzy order quantity. Inf. Sci. (NY) 319, 283–319 (1996)

    Article  Google Scholar 

  13. Shekarian, E., Kazemi, N., Abdul-Rashid, S.H., Olugu, E.U.: Fuzzy inventory models: a comprehensive review. Appl. Soft Comput. J. 55, 588–621 (2017). https://doi.org/10.1016/j.asoc.2017.01.013

    Article  Google Scholar 

  14. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. (NY) 8, 199–249 (1975). https://doi.org/10.1016/0020-0255(75)90036-5

    Article  MathSciNet  MATH  Google Scholar 

  15. Zadeh, L.A.: Fuzzy logic—a personal perspective. Fuzzy Sets Syst. 281, 4–20 (2015). https://doi.org/10.1016/j.fss.2015.05.009

    Article  MathSciNet  MATH  Google Scholar 

  16. Mendel, J.M., Wu, D.: Perceptual Computing. Wiley, Hoboken (2010)

    Book  Google Scholar 

  17. Castillo, O., Amador-Angulo, L., Castro, J.R., Garcia-Valdez, M.: A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inf. Sci. (NY) 354, 257–274 (2016). https://doi.org/10.1016/j.ins.2016.03.026

    Article  Google Scholar 

  18. Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made Simple. Fuzzy Syst IEEE Trans. 14, 808–821 (2006). https://doi.org/10.1109/TFUZZ.2006.879986

    Article  Google Scholar 

  19. Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W.: Type-2 fuzzy logic: theory and applications. In: 2007 IEEE Int Conf Granul Comput (GRC 2007), pp. 145–145 (2007). https://doi.org/10.1109/GrC.2007.118

  20. Muhuri, P.K., Ashraf, Z., Lohani, Q.M.D.: Multi-objective reliability-redundancy allocation problem with interval type-2 fuzzy uncertainty. IEEE Trans. Fuzzy Syst. 26, 1–1 (2017). https://doi.org/10.1109/TFUZZ.2017.2722422

    Article  Google Scholar 

  21. Olivas, F., Amador-Angulo, L., Perez, J., et al.: Comparative study of type-2 fuzzy Particle swarm, Bee Colony and Bat Algorithms in optimization of fuzzy controllers. Algorithms (2017). https://doi.org/10.3390/a10030101

    Article  MATH  Google Scholar 

  22. Ashraf, Z., Muhuri, P.K., Danish Lohani, Q.M., Nath, R.: Fuzzy multi-objective reliability-redundancy allocation problem. In: 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, pp. 2580–2587 (2014)

  23. Ashraf, Z., Muhuri, P.K., Danish Lohani, Q.M.: Particle swam optimization based reliability-redundancy allocation in a type-2 fuzzy environment. In: 2015 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp 1212–1219 (2015)

  24. Ashraf, Z., Muhuri, P.K., Lohani, Q.M.D., Roy, M.L.: Type-2 fuzzy reliability–redundancy allocation problem and its solution using particle-swarm optimization algorithm. Granul. Comput. 4, 145–166 (2019). https://doi.org/10.1007/s41066-018-0106-5

    Article  Google Scholar 

  25. Gonzalez, C.I., Melin, P., Castro, J.R., et al.: Optimization of interval type-2 fuzzy systems for image edge detection. Appl. Soft Comput. 47, 631–643 (2016). https://doi.org/10.1016/j.asoc.2014.12.010

    Article  Google Scholar 

  26. Gonzalez, C.I., Melin, P., Castro, J.R., et al.: An improved sobel edge detection method based on generalized type-2 fuzzy logic. Soft Comput. 20, 773–784 (2016). https://doi.org/10.1007/s00500-014-1541-0

    Article  Google Scholar 

  27. Castillo, O., Sanchez, M.A., Gonzalez, C.I., Martinez, G.E.: Review of recent type-2 fuzzy image processing applications. Information 8, 97 (2017)

    Article  Google Scholar 

  28. Ashraf, Z., Roy, M.L., Muhuri, P.K., Danish Lohani, Q.M.: Interval type-2 fuzzy logic system based similarity evaluation for image steganography. Heliyon 6, e03771 (2020). https://doi.org/10.1016/j.heliyon.2020.e03771

    Article  Google Scholar 

  29. Muhuri, P.K., Ashraf, Z., Goel, S.: A novel image steganographic method based on integer wavelet transformation and particle swarm optimization. Appl. Soft Comput. J. (2020). https://doi.org/10.1016/j.asoc.2020.106257

    Article  Google Scholar 

  30. Ashraf, Z., Roy, M.L., Muhuri, P.K., Danish Lohani, Q.M.: A novel image steganography approach based on interval type-2 fuzzy similarity. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, pp. 1–8 (2018)

  31. Melin, P., Castillo, O.: A review on the applications of type-2 fuzzy logic in classification and pattern recognition. Expert Syst. Appl. 40, 5413–5423 (2013). https://doi.org/10.1016/j.eswa.2013.03.020

    Article  Google Scholar 

  32. Rubio, E., Castillo, O., Valdez, F., et al.: An extension of the fuzzy possibilistic clustering algorithm using type-2 fuzzy logic techniques. Adv. Fuzzy Syst. 2017, 1–23 (2017). https://doi.org/10.1155/2017/7094046

    Article  Google Scholar 

  33. Ashraf, Z., Khan, M.S., Lohani, Q.M.D.: New bounded variation based similarity measures between Atanassov intuitionistic fuzzy sets for clustering and pattern recognition. Appl. Soft Comput. J. (2019). https://doi.org/10.1016/j.asoc.2019.105529

    Article  Google Scholar 

  34. Cervantes, L., Castillo, O.: Type-2 fuzzy logic aggregation of multiple fuzzy controllers for airplane flight control. Inf. Sci. (NY) 324, 247–256 (2015). https://doi.org/10.1016/j.ins.2015.06.047

    Article  Google Scholar 

  35. Tai, K., El-Sayed, A.-R., Biglarbegian, M., et al.: Review of recent type-2 fuzzy controller applications. Algorithms 9, 39 (2016). https://doi.org/10.3390/a9020039

    Article  MathSciNet  Google Scholar 

  36. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95—International Conference on Neural Networks. IEEE, pp. 1942–1948 (1995)

  37. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360). IEEE, pp. 69–73 (1998)

  38. Leboucher, C., Shin, H.S., Siarry, P., et al.: Convergence proof of an enhanced Particle Swarm Optimisation method integrated with Evolutionary Game Theory. Inf. Sci. (NY) 346–347, 389–411 (2016). https://doi.org/10.1016/j.ins.2016.01.011

    Article  MATH  Google Scholar 

  39. Alam, S., Dobbie, G., Koh, Y.S., et al.: Research on particle swarm optimization based clustering: a systematic review of literature and techniques. Swarm Evol. Comput. 17, 1–13 (2014). https://doi.org/10.1016/j.swevo.2014.02.001

    Article  Google Scholar 

  40. AlRashidi, M.R., El-Hawary, M.E.: A survey of particle swarm optimization applications in electric power systems. IEEE Trans. Evol. Comput. 13, 913–918 (2009). https://doi.org/10.1109/TEVC.2006.880326

    Article  Google Scholar 

  41. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  42. Pandey, M., Litoriya, R., Pandey, P.: Identifying causal relationships in mobile app issues: an interval type-2 fuzzy DEMATEL approach. Wirel. Pers. Commun. 108, 683–710 (2019). https://doi.org/10.1007/s11277-019-06424-9

    Article  Google Scholar 

  43. Shukla, A.K., Muhuri, P.K.: Big-data clustering with interval type-2 fuzzy uncertainty modeling in gene expression datasets. Eng. Appl. Artif. Intell. 77, 268–282 (2019). https://doi.org/10.1016/j.engappai.2018.09.002

    Article  Google Scholar 

  44. Amador-Angulo, L., Castillo, O.: A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers. Soft Comput. 22, 571–594 (2018). https://doi.org/10.1007/s00500-016-2354-0

    Article  Google Scholar 

  45. Qu, Z., Zhang, Z., Du, Z., Peng, M.: Interval type-2 fuzzy sampled-data optimal control for nonlinear systems with multiple conditions. Int. J. Fuzzy Syst. 21, 1480–1496 (2019). https://doi.org/10.1007/s40815-019-00640-y

    Article  MathSciNet  Google Scholar 

  46. Li, R., Huang, Y., Wang, J.: Long-term traffic volume prediction based on type-2 fuzzy sets with confidence interval method. Int. J. Fuzzy Syst. 21, 2120–2131 (2019). https://doi.org/10.1007/s40815-019-00701-2

    Article  Google Scholar 

  47. Javanmard, M., Mishmast Nehi, H.: A solving method for fuzzy linear programming problem with interval type-2 fuzzy numbers. Int. J. Fuzzy Syst. 21, 882–891 (2019). https://doi.org/10.1007/s40815-018-0591-3

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, H., Pan, X., He, S.: A new interval type-2 fuzzy VIKOR method for multi-attribute decision making. Int. J. Fuzzy Syst. 21, 145–156 (2019). https://doi.org/10.1007/s40815-018-0527-y

    Article  MathSciNet  Google Scholar 

  49. Dinçer, H., Yüksel, S., Martínez, L.: A comparative analysis of incremental and disruptive innovation policies in the European banking sector with hybrid interval type-2 fuzzy decision-making models. Int. J. Fuzzy Syst. 22, 1158–1176 (2020). https://doi.org/10.1007/s40815-020-00851-8

    Article  Google Scholar 

  50. Mousavi, S.M., Hajipour, V., Niaki, S.T.A., Alikar, N.: Optimizing multi-item multi-period inventory control system with discounted cash flow and inflation: two calibrated meta-heuristic algorithms. Appl. Math. Model. 37, 2241–2256 (2013). https://doi.org/10.1016/j.apm.2012.05.019

    Article  MathSciNet  MATH  Google Scholar 

  51. Darwish, M.A., Odah, O.M.: Vendor managed inventory model for single-vendor multi-retailer supply chains. Eur. J. Oper. Res. 204, 473–484 (2010). https://doi.org/10.1016/j.ejor.2009.11.023

    Article  MATH  Google Scholar 

  52. Mateen, A., Chatterjee, A.K.: Vendor managed inventory for single-vendor multi-retailer supply chains. Decis. Support Syst. 70, 31–41 (2015). https://doi.org/10.1016/j.dss.2014.12.002

    Article  Google Scholar 

  53. Zavanella, L., Zanoni, S.: A one-vendor multi-buyer integrated production-inventory model: the “Consignment Stock” case. Int. J. Prod. Econ. 118, 225–232 (2009). https://doi.org/10.1016/j.ijpe.2008.08.044

    Article  Google Scholar 

  54. Sadeghi, J., Mousavi, S.M., Niaki, S.T.A., Sadeghi, S.: Optimizing a multi-vendor multi-retailer vendor managed inventory problem: two tuned meta-heuristic algorithms. Knowl. Based Syst. 50, 159–170 (2013). https://doi.org/10.1016/j.knosys.2013.06.006

    Article  Google Scholar 

  55. Liao, S., Hsieh, C., Lai, P.: An evolutionary approach for multi-objective optimization of the integrated location – inventory distribution network problem in vendor-managed inventory. Expert Syst. Appl. 38, 6768–6776 (2011). https://doi.org/10.1016/j.eswa.2010.12.072

    Article  Google Scholar 

  56. Sadeghi, J., Sadeghi, S., Niaki, S.T.A.: A hybrid vendor managed inventory and redundancy allocation optimization problem in supply chain management: an NSGA-II with tuned parameters. Comput. Oper. Res. 41, 53–64 (2014). https://doi.org/10.1016/j.cor.2013.07.024

    Article  MathSciNet  MATH  Google Scholar 

  57. Shi, C.D., Bian, D.X.: Supply chain management model based on VMI. In: 2009 Int Conf Inf Multimed Technol (ICIMT 2009), pp. 90–93 (2009). https://doi.org/10.1109/ICIMT.2009.21

  58. Lee, H.-M., Yao, J.-S.: Economic production quantity for fuzzy demand quantity, and fuzzy production quantity. Eur. J. Oper. Res. 109, 203–211 (1998). https://doi.org/10.1016/S0377-2217(97)00200-2

    Article  MATH  Google Scholar 

  59. Kazemi, N., Ehsani, E., Jaber, M.Y.: An inventory model with backorders with fuzzy parameters and decision variables. Int. J. Approx. Reason. 51, 964–972 (2010). https://doi.org/10.1016/j.ijar.2010.07.001

    Article  MathSciNet  MATH  Google Scholar 

  60. Kazemi, N., Shekarian, E., Cárdenas-Barrón, L.E., Olugu, E.U.: Incorporating human learning into a fuzzy EOQ inventory model with backorders. Comput. Ind. Eng. 87, 540–542 (2015). https://doi.org/10.1016/j.cie.2015.05.014

    Article  Google Scholar 

  61. De, S.K., Mahata, G.C.: Decision of a fuzzy inventory with fuzzy backorder model under cloudy fuzzy demand rate. Int. J. Appl. Comput. Math. (2016). https://doi.org/10.1007/s40819-016-0258-4

    Article  MATH  Google Scholar 

  62. Wang, Z., Yang, L., Zhao, L., et al.: A dual-objective vendor-managed inventory model for a single-vendor multi-retailer supply chain with fuzzy random demand. J. Intell. Fuzzy Syst. 35, 211–222 (2018). https://doi.org/10.3233/JIFS-169581

    Article  Google Scholar 

  63. Dasaklis, T., Casino, F.: Improving vendor-managed inventory strategy based on Internet of Things (IoT) applications and blockchain technology. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE, pp 50–55 (2019)

  64. Sainathan, A., Groenevelt, H.: Vendor managed inventory contracts—coordinating the supply chain while looking from the vendor’s perspective. Eur. J. Oper. Res. 272, 249–260 (2019). https://doi.org/10.1016/j.ejor.2018.06.028

    Article  MathSciNet  MATH  Google Scholar 

  65. Chanas, S.: Fuzzy programming in multiobjective linear programming—a parametric approach. Fuzzy Sets Syst. 29, 303–313 (1989). https://doi.org/10.1016/0165-0114(89)90042-0

    Article  MathSciNet  MATH  Google Scholar 

  66. Wu, D., Mendel, J.M.: Enhanced Karnik–Mendel algorithms. IEEE Trans. Fuzzy Syst. 17, 923–934 (2009). https://doi.org/10.1109/TFUZZ.2008.924329

    Article  Google Scholar 

  67. Mendel, J.M., Liu, X.: Simplified interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 21, 1056–1069 (2013). https://doi.org/10.1109/TFUZZ.2013.2241771

    Article  Google Scholar 

  68. Salaken, S.M., Khosravi, A., Nahavandi, S.: Modification on enhanced Karnik–Mendel algorithm. Expert Syst. Appl. 65, 283–291 (2016). https://doi.org/10.1016/j.eswa.2016.08.055

    Article  Google Scholar 

  69. Roozbeh Nia, A., Hemmati Far, M., Akhavan Niaki, S.T.: A fuzzy vendor managed inventory of multi-item economic order quantity model under shortage: an ant colony optimization algorithm. Int. J. Prod. Econ. 155, 259–271 (2014). https://doi.org/10.1016/j.ijpe.2013.07.017

    Article  Google Scholar 

  70. Mousavi, S.M., Sadeghi, J., Niaki, S.T.A., et al.: Two parameter-tuned meta-heuristics for a discounted inventory control problem in a fuzzy environment. Inf. Sci. (NY) 276, 42–62 (2014). https://doi.org/10.1016/j.ins.2014.02.046

    Article  MathSciNet  Google Scholar 

  71. Samal, N.K., Pratihar, D.K.: Optimization of variable demand fuzzy economic order quantity inventory models without and with backordering. Comput. Ind. Eng. 78, 148–162 (2014). https://doi.org/10.1016/j.cie.2014.10.006

    Article  Google Scholar 

  72. Taleizadeh, A.A., Niaki, S.T.A., Wee, H.: Joint single vendor–single buyer supply chain problem with stochastic demand and fuzzy lead-time. Knowl. Based Syst. 48, 1–9 (2013). https://doi.org/10.1016/j.knosys.2013.03.011

    Article  Google Scholar 

  73. Tong, A., Dao-zhi, Z.: A supply chain model of vendor managed inventory with fuzzy demand. In: 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization. IEEE, pp. 15–18 (2010)

  74. Cárdenas-Barrón, L.E., Treviño-Garza, G., Wee, H.M.: A simple and better algorithm to solve the vendor managed inventory control system of multi-product multi-constraint economic order quantity model. Expert Syst. Appl. 39, 3888–3895 (2012). https://doi.org/10.1016/j.eswa.2011.09.057

    Article  Google Scholar 

  75. Roozbeh Nia, A., Hemmati Far, M., Niaki, S.T.A.: A hybrid genetic and imperialist competitive algorithm for green vendor managed inventory of multi-item multi-constraint EOQ model under shortage. Appl. Soft Comput. 30, 353–364 (2015). https://doi.org/10.1016/j.asoc.2015.02.004

    Article  Google Scholar 

  76. Ashraf, Z., Malhotra, D., Muhuri, P.K., Lohani, Q.M.D.: Hybrid biogeography-based optimization for solving vendor managed inventory system. In: 2017 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 2598–2605 (2017)

  77. Mousavi, S.M., Alikar, N., Niaki, S.T.A., Bahreininejad, A.: Two tuned multi-objective meta-heuristic algorithms for solving a fuzzy multi-state redundancy allocation problem under discount strategies. Appl. Math. Model. 39, 6968–6989 (2015). https://doi.org/10.1016/j.apm.2015.02.040

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the helpful feedback received from the reviewers and the editors that have significantly helped enhance the paper. The fourth author, Dr. Q. M. Danish Lohani, gratefully acknowledges SERB, DST, Government of India to support this research under the scheme of the MATRICS program (Grant File No. SERB/F/10728/2019-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zubair Ashraf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, Z., Malhotra, D., Muhuri, P.K. et al. Interval Type-2 Fuzzy Vendor Managed Inventory System and Its Solution with Particle Swarm Optimization. Int. J. Fuzzy Syst. 23, 2080–2105 (2021). https://doi.org/10.1007/s40815-021-01077-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01077-y

Keywords

Navigation