Skip to main content
Log in

Absolutely Continuous Edge Spectrum of Hall Insulators on the Lattice

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

The presence of chiral modes on the edges of quantum Hall samples is essential to our understanding of the quantum Hall effect. In particular, these edge modes should support ballistic transport and therefore, in a single-particle picture, be supported in the absolutely continuous spectrum of the single-particle Hamiltonian. We show in this note that if a free fermion system on the two-dimensional lattice is gapped in the bulk and has a non-vanishing Hall conductance, then the same system put on a half-space geometry supports edge modes whose spectrum fills the entire bulk gap and is absolutely continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Graf, G.M.: Localization bounds for an electron gas. J. Phys. A: Math. Gen. 31(32), 6783 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. Asch, J., Bourget, O., Joye, A.: On stable quantum currents. J. Math. Phys. 61(9), 092104 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  3. Avron, J., Seiler, R., Simon, B.: The index of a pair of projections. J. Funct. Anal. 120(1), 220–237 (1994)

    Article  MathSciNet  Google Scholar 

  4. Bellissard, J., van Elst, A., Schulz-Baldes, H.: The noncommutative geometry of the quantum hall effect. J. Math. Phys. 35(10), 5373–5451 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  5. Briet, P., Hislop, P.D., Raikov, G., Soccorsi, E.: Mourre estimates for a 2d magnetic quantum hamiltonian on strip-like domains. Contemp. Math. 500, 33 (2009)

    Article  MathSciNet  Google Scholar 

  6. Cedzich, C., Geib, T., Grünbaum, F.A., Stahl, C., Velázquez, L., Werner, A.H., Werner, R.F.: The topological classification of one-dimensional symmetric quantum walks. Ann. Henri Poincaré 19, 325–383 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  7. Conway, J.B.: A Course in Functional Analysis, vol. 96. Springer, Berlin (2019)

    Google Scholar 

  8. De Bievre, S., Pulé, J.V.: Propagating edge states for a magnetic hamiltonian. In: Mathematical Physics Electronic Journal: (Print Version) Volumes 5 and 6, pp. 39–55. World Scientific, Singapore (2002)

  9. Elbau, P., Graf, G.M.: Equality of bulk and edge hall conductance revisited. Commun. Math. Phys. 229(3), 415–432 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  10. Elgart, A., Graf, G.M., Schenker, J.H.: Equality of the bulk and edge hall conductances in a mobility gap. Commun. Math. Phys. 259(1), 185–221 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. Fonseca, E., Shapiro, J., Sheta, A., Wang, A., Yamakawa, K.: Two-dimensional time-reversal-invariant topological insulators via fredholm theory. Math. Phys. Anal. Geom. 23(3), 1–22 (2020)

    Article  MathSciNet  Google Scholar 

  12. Fröhlich, J., Graf, G.M., Walcher, J.: On the extended nature of edge states of quantum hall hamiltonians. Ann. Henri Poincaré 1(3), 405–442 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. Halperin, B.I.: Quantized hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25(4), 2185 (1982)

    Article  ADS  Google Scholar 

  14. Hislop, P.D., Soccorsi, E.: Edge currents for quantum hall systems i: one-edge, unbounded geometries. Rev. Math. Phys. 20(01), 71–115 (2008)

    Article  MathSciNet  Google Scholar 

  15. Kellendonk, J., Richter, T., Schulz-Baldes, H.: Simultaneous quantization of edge and bulk hall conductivity. J. Phys. A: Math. Gen. 33(2), L27 (2000)

    Article  MathSciNet  Google Scholar 

  16. Kellendonk, J., Richter, T., Schulz-Baldes, H.: Edge current channels and chern numbers in the integer quantum hall effect. Rev. Math. Phys. 14(01), 87–119 (2002)

    Article  MathSciNet  Google Scholar 

  17. Laughlin, R.B.: Quantized hall conductivity in two dimensions. Phys. Rev. B 23(10), 5632 (1981)

    Article  ADS  Google Scholar 

  18. Macris, N.: On the equality of bulk and edge conductance in the integer hall effect: microscopic analysis. Preprint (2003)

  19. Macris, N., Martin, Ph.A., Pulé, J.V.: On edge states in semi-infinite quantum hall systems. J. Phys. A: Math. Gen. 32(10), 1985 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  20. Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators. Springer, Berlin (2016)

    Book  Google Scholar 

  21. Teschl, G.: Mathematical Methods in Quantum Mechanics, volume 157 of Graduate Studies in Math. Amer. Math. Soc. (2009)

Download references

Acknowledgements

This work was supported by VILLIUM FONDEN through the QMATH Centre of Excellence (grant no. 10059) and a Villium Young Investigator Grant (grant no. 25452).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Bols.

Additional information

Communicated by Alain Joye.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bols, A., Werner, A.H. Absolutely Continuous Edge Spectrum of Hall Insulators on the Lattice. Ann. Henri Poincaré 23, 549–554 (2022). https://doi.org/10.1007/s00023-021-01097-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-021-01097-2

Navigation