Skip to main content
Log in

Evaluation of potent cyanobacteria species for UV-protecting compound synthesis using bicarbonate-based culture system

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The present investigation evaluates the potential of three cyanobacteria species Anabaena cylindrica, Nostoc commune and Synechococcus BDUSM-13 for photo-protecting mycosporine-like amino acids (MAAs) synthesis using bicarbonate-based culture system. Current investigations witnessed noteworthy bicarbonate tolerance of all species (NaHCO3; 0.5, 1 and 2 g L− 1) in terms of their growth rate, chlorophyll content, biomass productivity and carbon fixation ability. Among all strains, Synechococcus BDUSM-13 showed maximum surge in specific growth rate (i.e. 0.72 day−1) at 1 g L−1, productivity (i.e. 0.92 ± 0.06 g day−1 L−1) and chlorophyll content (i.e. 0.09 g L−1) at 2 g day−1 L−1. Synechococcus cells were also has the 0.48 g dw−1 carbon content with highest CO2 fixation rate (i.e. 0.653 g.CO2 mL−1 day−1) at 2 g L−1. Though, they were not able to produce MAAs after long UV-B exposure (i.e. 24 and 48 h). A. cylindrica strain was the most competent species for the bicarbonate-based approach, produced UV-protecting iminomycosporine compound (i.e. shinorine, λmax at 334 ± 2 nm) along with carbon fixation (i.e. 0.49 g CO2 mL−1 day−1) at 2 g L−1 NaHCO3. This suggests the bicarbonate supplementation during cultivation is a promising strategy to increase cellular abundance, biomass productivity and carbon fixation in cyanobacteria. However, UV-B irradiation may cause species-specific differences in the MAAs synthesis to produce UV-protecting compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aishvarya V, Pradhan N, Nayak RR, Sukla LB, Mishra BK (2012) Enhanced inorganic carbon uptake by Chlorella sp. IMMTCC-2 under autotrophic conditions for lipid production and CO2 sequestration. J Appl Phycol 24(6):1455–1463

    Article  CAS  Google Scholar 

  • Anusree VM, Sujitha BS, Anand J, Arumugam M (2017) Dissolved inorganic carbonate sustain the growth, lipid and biomass yield of Scenedesmus quadricauda under nitrogen starved condition. Indian J Exp Biol 55:702–710

    CAS  Google Scholar 

  • Badger MR, Price GD (1992) The CO2 concentrating mechanism in cyanobacteria and microalgae. Physiol Plant 84(4):606–615

    Article  CAS  Google Scholar 

  • Bermejo R, Talavera EM, Orte JC (1997) Chromatographic purification of biliproteins from Spirulina platensis high-performance liquid chromatographic separation of their α and β subunits. J Chromatogr A 778(1–2):441–450

    Article  CAS  Google Scholar 

  • Blunden J, Arndt DS (2020) State of the climate in 2019. Bull Am Meteor Soc 101(8):S1–S429

    Article  Google Scholar 

  • Boucar MCM, Shen L-Q, Wang K, Zhang Z-C, Qiu B-S (2021) UV-B irradiation enhances the production of unique mycosporine-like amino acids and carotenoids in the subaerial cyanobacterium Pseudanabaena sp. CCNU1. Eur J Phycol 56(3):316–323. https://doi.org/10.1080/09670262.2020.1824019

    Article  CAS  Google Scholar 

  • Buma AGJ, Boelen P, Jeffrey WH (2003) UVR-induced DNA damage in aquatic organisms. UV Effects Aquat Organ Ecosyst 1:291–327

    CAS  Google Scholar 

  • Campos J, Valenzuela-Heredia D, Pedrouso A, Valdelo A, Belmonte M, Mosquera-Corral A (2016) Greenhouse gases emissions from wastewater treatment plants: minimization, treatment, and prevention. J Chem 2016:12. https://doi.org/10.1155/2016/3796352

    Article  CAS  Google Scholar 

  • Carrieri D, Ananyev G, Brown T, Dismukes GC (2007) In vivo bicarbonate requirement for water oxidation by photosystem II in the hypercarbonate-requiring cyanobacterium Arthrospira maxima. J Inorg Biochem 101(11–12):1865–1874

    Article  CAS  PubMed  Google Scholar 

  • Castro GFPDSD, Rizzo RF, Passos TS, Santos BNCD, Dias DDS, Domingues JR, KtGdL A (2015) Biomass production by Arthrospira platensis under different culture conditions. Food Sci Technol 35(1):18–24

    Article  Google Scholar 

  • Chi Z, Xie Y, Elloy F, Zheng Y, Hu Y, Chen S (2013) Bicarbonate-based integrated carbon capture and algae production system with alkalihalophilic cyanobacterium. Biores Technol 133:513–521

    Article  CAS  Google Scholar 

  • Chi Z, Elloy F, Xie Y, Hu Y, Chen S (2014) Selection of microalgae and cyanobacteria strains for bicarbonate-based integrated carbon capture and algae production system. Appl Biochem Biotechnol 172(1):447–457

    Article  CAS  PubMed  Google Scholar 

  • Corinaldesi C, Barone G, Marcellini F, Della Anno A, Danovaro R (2017) Marine microbial-derived molecules and their potential use in cosmeceutical and cosmetic products. Mar Drugs 15(4):118

    Article  PubMed Central  CAS  Google Scholar 

  • Costa JAV, Colla LM, Duarte Filho PF (2004) Improving Spirulina platensis biomass yield using a fed-batch process. Biores Technol 92(3):237–241

    Article  CAS  Google Scholar 

  • de la Coba F, Aguilera J, Korbee N, de Gálvez MV, Herrera-Ceballos E, Álvarez-Gómez F, Figueroa FL (2019) UVA and UVB photoprotective capabilities of topical formulations containing mycosporine-like amino acids (MAAs) through different Biological Effective Protection Factors (BEPFs). Mar Drugs 17(1):55

    Article  PubMed Central  CAS  Google Scholar 

  • Dextro RB, Moutinho FHM, Nordi CSF (2018) Growth and special structures production of Nostoc paludosum (Nostocaceae, Cyanobacteria) under nutrient starvation and different light intensities. Revista Ambiente Ãgua 13(6). https://doi.org/10.4136/ambi-agua.2191

  • Dunlap WC, Yamamoto Y (1995) Small-molecule antioxidants in marine organisms: antioxidant activity of mycosporine-glycine. Comp Biochem Physiol B Biochem Mol Biol 112(1):105–114

    Article  Google Scholar 

  • Ehling-Schulz M, Bilger W, Scherer S (1997) UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol 179(6):1940–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sheekh MM, Alwaleed EA, Ibrahim A, Saber H (2020) Detrimental effect of UV-B radiation on growth, photosynthetic pigments, metabolites and ultrastructure of some cyanobacteria and freshwater chlorophyta. Int J Radiat Biol 97(2):265–275. https://doi.org/10.1080/09553002.2021.1851060

    Article  CAS  PubMed  Google Scholar 

  • Fogg GE (1949) Growth and heterocyst production in Anabaena cylindrica lemm.: II. in relation to carbon and nitrogen metabolism. Ann Bot 13(51):241–259

    Article  CAS  Google Scholar 

  • Fuentes-Tristan S, Parra-Saldivar R, Iqbal HMN, Carrillo-Nieves D (2019) Bioinspired biomolecules: Mycosporine-like amino acids and scytonemin from Lyngbya sp. with UV-protection potentialities. J Photochem Photobiol B Biol 201:111684

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Wingard CE, Castenholz RW (1993) Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl Environ Microbiol 59(1):170–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8(2):229–239

    Article  CAS  PubMed  Google Scholar 

  • Gupta JK, Rai P, Jain KK, Srivastava S (2020) Overexpression of bicarbonate transporters in the marine cyanobacterium Synechococcus sp. PCC 7002 increases growth rate and glycogen accumulation. Biotechnol Biofuels 13(1):1–12

    Article  CAS  Google Scholar 

  • Hideg E, Jansen MAK, Ãk S (2013) UV-B exposure, ROS and stress: inseparable companions or loosely linked associates? Trends Plant Sci 18(2):107–115

    Article  CAS  PubMed  Google Scholar 

  • Hofstraat JW, Peeters JCH, Snel JFH, Geel C (1994) Simple determination of photosynthetic efficiency and photoinhibition of Dunaliella tertiolecta by saturating pulse fluorescence measurements. Mar Ecol Prog Ser 103(1/2):187–196. http://www.jstor.org/stable/24842238

    Article  Google Scholar 

  • Joshi D, Mohandass C, Dhale M (2018) Effect of UV-B radiation and desiccation stress on photoprotective compounds accumulation in marine Leptolyngbya sp. Appl Biochem Biotechnol 184(1):35–47

    Article  CAS  PubMed  Google Scholar 

  • Kageyama H, Waditee-Sirisattha R (2019) Antioxidative, anti-inflammatory and anti-aging properties of mycosporine-like amino acids: molecular and cellular mechanisms in the protection of skin-aging. Mar Drugs 17(4):222

    Article  CAS  PubMed Central  Google Scholar 

  • Kaplan A, Volokita M, Zenvirth D, Reinhold L (1984) An essential role for sodium in the bicarbonate transporting system of the cyanobacterium Anabaena variabilis. FEBS Lett 176(1):166–168

    Article  CAS  Google Scholar 

  • Karsten U, Wiencke C (1999) Factors controlling the formation of UV-absorbing mycosporine-like amino acids in the marine red alga Palmaria palmata from Spitsbergen (Norway). J Plant Physiol 155(3):407–415

    Article  CAS  Google Scholar 

  • Kim G-Y, Heo J, Kim H-S, Han J-I (2017) Bicarbonate-based cultivation of Dunaliella salina for enhancing carbon utilization efficiency. Biores Technol 237:72–77

    Article  CAS  Google Scholar 

  • Knefelkamp B, Carstens K, Wiltshire KH (2007) Comparison of different filter types on chlorophyll—a retention and nutrient measurements. J Exp Mar Biol Ecol 345(1):61–70

    Article  CAS  Google Scholar 

  • Krabs G, Bischof K, Hanelt D, Karsten U, Wiencke C (2002) Wavelength-dependent induction of UV-absorbing mycosporine-like amino acids in the red alga Chondrus crispus under natural solar radiation. J Exp Mar Biol Ecol 268(1):69–82

    Article  CAS  Google Scholar 

  • Lee JH, Lee DW, Kwak C, Kang K, Lee JH (2019) Technoeconomic and environmental evaluation of sodium bicarbonate production using CO2 from flue gas of a coal-fired power plant. Ind Eng Chem Res 58(34):15533–15541

    Article  CAS  Google Scholar 

  • Li J, Li C, Lan CQ, Liao D (2018) Effects of sodium bicarbonate on cell growth, lipid accumulation and morphology of Chlorella vulgaris. Microb Cell Fact 17(1):1–10

    Article  CAS  Google Scholar 

  • Maroneze MM, Jacob-Lopes E, Zepka LQ, Roca M, Pérez-Gálvez A (2019) Esterified carotenoids as new food components in cyanobacteria. Food Chem 287:295–302

    Article  CAS  Google Scholar 

  • Rajagopal S, Murthy SDS (1996) Short term effect of ultraviolet-B radiation on photosystem 2 photochemistry in the cyanobacterium Synechococcus 6301. Biol Plant 38(1):129–132

    Article  CAS  Google Scholar 

  • Rastogi RP, Sinha RP, Moh SH, Lee TK, Kottuparambil S, Kim Y-J, Rhee J-S, Choi E-M, Brown MT, Hader D-P (2014) Ultraviolet radiation and cyanobacteria. J Photochem Photobiol, B 141:154–169

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111(1):1–61

    Article  Google Scholar 

  • Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89(1):27–41

    Article  CAS  PubMed  Google Scholar 

  • Ryan KG, McMinn A, Mitchell KA, Trenerry L (2002) Mycosporine-like amino acids in Antarctic sea ice algae and their response to UVB radiation. Z Naturforsch C J Biosci 57(5–6):471–477

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Dhar DW (2019) Overview of carbon capture technology: microalgal biorefinery concept and state-of-the-art. Front Mar Sci 6:29

    Article  Google Scholar 

  • Singh SK, Bansal A, Jha MK, Dey A (2012) An integrated approach to remove Cr (VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater. Biores Technol 104:257–265

    Article  CAS  Google Scholar 

  • Singh SK, Bansal A, Jha MK, Jain R (2013) Production of biodiesel from wastewater grown Chlorella minutissima. Indian J Chem Technol 5(20):341–345

    Google Scholar 

  • Singh J, Tripathi R, Thakur IS (2014a) Characterization of endolithic cyanobacterial strain, Leptolyngbya sp. ISTCY101, for prospective recycling of CO2 and biodiesel production. Biores Technol 166:345–352

    Article  CAS  Google Scholar 

  • Singh SK, Sundaram S, Kishor K (2014b) Photosynthetic microorganisms: mechanism for carbon concentration. Springer International Publishing

    Book  Google Scholar 

  • Singh SP, Rastogi RP, Haider D-P, Sinha RP (2014c) Temporal dynamics of ROS biogenesis under simulated solar radiation in the cyanobacterium Anabaena variabilis PCC 7937. Protoplasma 251(5):1223–1230

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Rahman A, Dixit K, Nath A, Sundaram S (2016a) Evaluation of promising algal strains for sustainable exploitation coupled with CO2 fixation. Environ Technol 37(5):613–622

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Sundaram S, Sinha S, Rahman MA, Kapur S (2016b) Recent advances in CO2 uptake and fixation mechanism of cyanobacteria and microalgae. Crit Rev Environ Sci Technol 46(16):1297–1323

    Article  CAS  Google Scholar 

  • Sinha RP (2015) Biochemical characterization of sunscreening mycosporine-like amino acids from two Nostoc species inhabiting diverse habitats. Protoplasma 252(1):199–208

    Article  PubMed  CAS  Google Scholar 

  • Sinha RP, Klisch M, Hader D-P (1999) Induction of a mycosporine-like amino acid (MAA) in the rice-field cyanobacterium Anabaena sp. by UV irradiation. J Photochem Photobiol B Biol 52(1–3):59–64

    Article  CAS  Google Scholar 

  • Sinha RP, Klisch M, Helbling EW, Hader D-P (2001) Induction of mycosporine-like amino acids (MAAs) in cyanobacteria by solar ultraviolet-B radiation. J Photochem Photobiol, B 60(2–3):129–135

    Article  CAS  Google Scholar 

  • Sinha RP, Ambasht NK, Sinha JP, Hader D-P (2003) Wavelength-dependent induction of a mycosporine-like amino acid in a rice-field cyanobacterium, Nostoc commune: role of inhibitors and salt stress. Photochem Photobiol Sci 2(2):171–176

    Article  CAS  PubMed  Google Scholar 

  • Six C, Joubin L, Partensky F, Holtzendorff J, Garczarek L (2007) UV-induced phycobilisome dismantling in the marine picocyanobacterium Synechococcus sp. WH8102. Photosynth Res 92(1):75–86

    Article  CAS  PubMed  Google Scholar 

  • Smith JL, Boyer GL, Zimba PV (2008) A review of cyanobacterial odorous and bioactive metabolites: impacts and management alternatives in aquaculture. Aquaculture 280(1–4):5–20

    Article  CAS  Google Scholar 

  • Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol 31(1):225–274

    Article  CAS  PubMed  Google Scholar 

  • Stoyneva-Gartner M, Uzunov B, Gartner G (2020) Enigmatic microalgae from aeroterrestrial and extreme habitats in cosmetics: the potential of the untapped natural sources. Cosmetics 7(2):27

    Article  Google Scholar 

  • Tevini M, Pfister K (1985) Inhibition of photosystem II by UV-B-radiation. Zeitschrift Für Naturforschung C 40(1–2):129–133

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38

    Article  CAS  Google Scholar 

  • Zavarzin GA, Zhilina TN, Kevbrin VV (1999) The alkaliphilic microbial community and its functional diversity. Microbiology (new York, NY) 68(5):503–521

    CAS  Google Scholar 

  • Zhou W, Sui Z, Wang J, Hu Y, Kang KH, Hong HR, Niaz Z, Wei H, Du Q, Peng C (2016) Effects of sodium bicarbonate concentration on growth, photosynthesis and carbonic anhydrase activity of macroalgae Gracilariopsis lemaneiformis, Gracilaria vermiculophylla and Gracilaria chouae (Gracilariales, Rhodophyta). Photosynth Res 128(3):259–270

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the University of Allahabad, Prayagraj, India for providing necessary laboratory facilities. Dr. Shailendra Kumar Singh gratefully acknowledges the financial support from the University Grants Commission (UGC) through Dr. D. S. Kothari Postdoctoral Scheme. Rupali Kaur is also thankful to the UGC for providing D. Phil. fellowship for the financial assistance.

Funding

This work was supported by the University Grants Commission, New Delhi, India [Grant number: EN/19-20/0020].

Author information

Authors and Affiliations

Authors

Contributions

All authors provided critical feedback and helped shape the research, analysis and manuscript. SKS, RK, MAR, MM and SS are the authors of manuscript entitled “An integrated approach to produce UV-protecting compounds in cyanobacterial strains coupled with CO2 sequestration”. Prof. SS and Dr. SKS conceived of the presented idea and encouraged RK and MM investigated the proposed approach and carried out the experiment. Dr. MAR verified the analytical methods. Dr. SKS wrote the manuscript with support from MAR, and SS. The overall project has been completed under the mentorship of corresponding author Prof. SS.

Corresponding author

Correspondence to Shanthy Sundaram.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Kaur, R., Rahman, M.A. et al. Evaluation of potent cyanobacteria species for UV-protecting compound synthesis using bicarbonate-based culture system. 3 Biotech 11, 412 (2021). https://doi.org/10.1007/s13205-021-02945-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02945-y

Keywords

Navigation