Skip to main content

Advertisement

Log in

Zeb2/Axin2-Enriched BMSC-Derived Exosomes Promote Post-Stroke Functional Recovery by Enhancing Neurogenesis and Neural Plasticity

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Exosomes harvested from bone marrow-derived mesenchymal stromal cells (BMSCs) have shown treatment potential in many diseases. In vitro, Zeb2/Axin2 stimulated endogenous neurogenesis, which induced functional recovery after stroke. Here, we investigated whether the Zeb2/Axin2-enriched exosomes harvested from BMSCs transfected with a Zeb2/Axin2 overexpression plasmid would enhance neurological recovery. Compared with the control, both exosome treatments significantly improved functional recovery, and Zeb2/Axin2-enriched exosomes had significantly more improved effects on neurological function, neurogenesis, and neurite remodeling/neuronal dendrite plasticity than the control BMSC exosome treatment in a middle cerebral artery occlusion MCAO rat model. After stimulation with Zeb2/Axin2-enriched BMSC exosomes, the spatial memory and nerve function of MCAO rats showed marked recovery. The number of neurons was increased in the subventricular zone (SVZ), hippocampus, and cortex area, while the expression of nerve growth factors (NGF, BDNF, etc.) was upregulated. In the ischemic boundary zone, Zeb2/Axin2-enriched exosomes promoted synaptic remodeling by increasing the number of synapses and reversed the axonal loss of phosphorylated neurofilament (SMI-31) and synaptophysin (SYN) caused by ischemic injury, thus alleviating axonal demise and promoting synaptic proliferation. In vitro, Zeb2/Axin2-enriched exosomes significantly increased neurite branching and elongation of cultured cortical embryonic rat neurons under oxygen- and glucose-deprived (OGD) conditions. Moreover, Ex-Zeb2/Axin2-enriched exosomes downregulated the protein level of SOX10, endothelin-3/EDNRB, and Wnt/β-catenin expression. In conclusion, exosomes harvested from Ex-Zeb2/Axin2 BMSC could improve post-stroke neuroplasticity and functional recovery in MCAO rats by promoting proliferation and differentiation of neural stem cells. The mechanism may be related to the SOX10, Wnt/β-catenin, and endothelin-3/EDNRB pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aimone JB, Li Y, Lee SW, Clemenson GD, Deng W, Gage FH (2014) Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 94(4):991–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braccioli L, Velthoven C, Heijnen CJ (2014) Exosomes: A New Weapon to Treat the Central Nervous System. Mol Neurobiol 49(1):113–119

    Article  CAS  PubMed  Google Scholar 

  • Brouns R, Espinoza AV, Goudman L, Moens M, Verlooy J (2019) Interventions to promote work participation after ischaemic stroke: A systematic review. Clin Neurol Neurosurg 105458

  • Chang D-J, Oh S-H, Lee N, Choi C, Jeon I, Kim HS et al (2013) Contralaterally transplanted human embryonic stem cell-derived neural precursor cells (ENStem-A) migrate and improve brain functions in stroke-damaged rats. Exp Mol Med 45(11):e53–e53

    Article  PubMed  PubMed Central  Google Scholar 

  • Chavez JC, Baranova O, Lin J, Pichiule P (2006) The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes. 26(37):9471–9481

  • Chen J, Magavi SS, Macklis JD (2004) Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice. Proc Natl Acad Sci 101(46):16357–16362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z-Z, Jiang X-D, Zhang L-L, Shang J-H, Du M-X, Xu G et al (2008) Beneficial effect of autologous transplantation of bone marrow stromal cells and endothelial progenitor cells on cerebral ischemia in rabbits. Neurosci Lett 445(1):36–41

    Article  CAS  PubMed  Google Scholar 

  • Chivet M, Hemming F, Pernet-Gallay K, Fraboulet S, Sadoul R (2012) Emerging Role of Neuronal Exosomes in the Central Nervous System. Front Physiol 3:145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E et al (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7(6):1267–1278

    Article  CAS  PubMed  Google Scholar 

  • Dai Z-M, Sun S, Wang C, Huang H, Hu X, Zhang Z et al (2014) Stage-specific regulation of oligodendrocyte development by Wnt/β-catenin signaling. J Neurosci 34(25):8467–8473

    Article  PubMed  PubMed Central  Google Scholar 

  • Dao DY, Yang X, Di C, Zuscik M, O’Keefe, RJ (2007) Axin1 and Axin2 are regulated by TGF-β and mediate cross-talk between TGF-β and Wnt signaling pathways. Ann N Y Acad Sci 1116:82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darsalia V, Kallur T, Kokaia Z (2007) Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur J Neurosci 26(3):605–614

    Article  PubMed  Google Scholar 

  • Fancy SP, Harrington EP, Yuen TJ, Silbereis JC, Zhao C, Baranzini SE et al (2011) Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci 14(8):1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felling RJ, Levison SW (2003) Enhanced neurogenesis following stroke. J Neurosci Res 73(3):277–283

    Article  CAS  PubMed  Google Scholar 

  • Ferro JM, Caeiro L, Figueira ML (2016) Neuropsychiatric sequelae of stroke. Nat Rev Neurol 12(5):269

    Article  PubMed  Google Scholar 

  • Ji L-L, Long X-F, Tian H, Liu Y-F (2013) Effect of transplantation of bone marrow stem cells on myocardial infarction size in a rabbit model. World J Emerg Med 4(4):304

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin C, Tian H, Li J et al (2018) Stem cell education for medical students at Tongji University: Primary cell culture and directional differentiation of rat bone marrow mesenchymal stem cells. Biochem Mol Biol Educ 46:151–154

    Article  CAS  PubMed  Google Scholar 

  • Khodanovich M, Nemirovich-Danchenko NM (2019) New neurons in the post-ischemic and injured brain: migrating or resident? Front Neurosci 13:588

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YR, Kim HN, Ahn SM, Choi YH, Shin HK, Choi BT (2014) Electroacupuncture promotes post-stroke functional recovery via enhancing endogenous neurogenesis in mouse focal cerebral ischemia. PLoS One 9(2)

  • Lee E-G, Son H (2009) Adult hippocampal neurogenesis and related neurotrophic factors. BMB Rep 42(5):239–244

    Article  CAS  PubMed  Google Scholar 

  • Ling X, Zhang G, Zhu Q, Zhang J, Li Q, Niu X et al (2018) Exosomes from Human Urine-Derived Stem Cells Promote Neurogenesis Via Histone Deacetylase6 Regulation in Ischemic Stroke. Available at SSRN 3288885

  • Longa EZ, Weinstein P, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Article  CAS  PubMed  Google Scholar 

  • Magavi SS, Leavitt BR, Macklis JD (2000) Induction of neurogenesis in the neocortex of adult mice. Nature 405(6789):951–955

    Article  CAS  PubMed  Google Scholar 

  • Mahmood A, Lu D, Qu C, Goussev A, Chopp M (2006) Long-term recovery after bone marrow stromal cell treatment of traumatic brain injury in rats. J Neurosurg 104(2):272–277

    Article  PubMed  Google Scholar 

  • Manuel GE, Johnson T, Liu D (2017) Therapeutic angiogenesis of exosomes for ischemic stroke. International Journal of Physiology, Pathophysiology and Pharmacology 9(6):188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N et al (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 25(4):554–560

    Article  PubMed  Google Scholar 

  • Nagasawa H, Kogure K (1989) Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke 20(8):1037–1043

  • Nudo RJ (2001) Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 24

  • Oki K, Tatarishvili J, Wood J, Koch P, Wattananit S, Mine Y et al (2012) Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain. STEM CELLS 30(6):1120–1133

    Article  CAS  PubMed  Google Scholar 

  • Qu R, Li Y, Gao Q, Shen L, Zhang J, Liu Z et al (2007) Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts. Neuropathology 27(4):355–363

    Article  PubMed  PubMed Central  Google Scholar 

  • Quesseveur G, David D, Gaillard M, Pla P, Wu M, Nguyen H et al (2013) BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl Psychiatry 3(4):e253–e253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rexach J, Swarup V, Chang T, Geschwind D (2019) Dementia risk genes engage gene networks poised to tune the immune response towards chronic inflammatory states. bioRxiv 597542

  • Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S (2005) Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol 192(2):348–356

    Article  CAS  PubMed  Google Scholar 

  • Schmidt HD, Duman RS (2007) The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol 18(5–6):391–418

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Hori T, Miyata H, Maehara M, Namba T (2019) Analysis of proliferating neuronal progenitors and immature neurons in the human hippocampus surgically removed from control and epileptic patients. Sci Rep 9(1):1–14

    Article  Google Scholar 

  • Shin MK, Levorse J, Ingram RS, Tilghman SM (1999) The temporal requirement for endothelin receptor-B signalling during neural crest development. Nature 402:496–501

    Article  CAS  PubMed  Google Scholar 

  • Sidebotham EL, Woodward MN, Kenny SE et al (2002) Localization and endothelin-3 dependence of stem cells of the enteric nervous system in the embryonic colon. J Pediatr Surg 37(2):145–150

  • Tang Y, Cui Y-C, Wang X-J, Wu A-L, Hu G-F, Luo F-L et al (2012) Neural progenitor cells derived from adult bone marrow mesenchymal stem cells promote neuronal regeneration. Life Sci 91(19–20):951–958

    Article  CAS  PubMed  Google Scholar 

  • Théry C, Amigorena S, Raposo G (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 3(3):22

    PubMed  Google Scholar 

  • Théry C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579

    Article  PubMed  Google Scholar 

  • Tian T, Zhang H-X, He C-P, Fan S, Zhu Y-L, Qi C et al (2018a) Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 150:137–149

    Article  CAS  PubMed  Google Scholar 

  • Tian T, Zhang H, He C, Fan S, Zhu Y, Qi C et al (2018b) Surface Functionalized Exosomes as Targeted Drug Delivery Vehicles for Cerebral Ischemia Therapy 150:137–149

    CAS  Google Scholar 

  • Vahidy FS, Rahbar MH, Zhu H, Rowan PJ, Bambhroliya AB, Savitz SI (2016) Systematic review and meta-analysis of bone marrow–derived mononuclear cells in animal models of ischemic stroke. Stroke 47(6):1632–1639

    Article  PubMed  PubMed Central  Google Scholar 

  • Valadi H, Ekström K, Bossios A, Sjöstrand M (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Stanchina L, Lecerf L, Gacem N, Conidi A, Baral V et al (2017) Differentiation of mouse enteric nervous system progenitor cells is controlled by endothelin 3 and requires regulation of Ednrb by SOX10 and ZEB2. Gastroenterology 152(5):1139–1150. e1134

  • Wu Z, Liang Y, Yu S (2020) Downregulation of microRNA-103a reduces microvascular endothelial cell injury in a rat model of cerebral ischemia by targeting AXIN2. J Cell Physiol 235(5):4720–4733

    Article  CAS  PubMed  Google Scholar 

  • Xin H, Katakowski M, Wang F, Qian J-Y, Liu XS, Ali MM et al (2017a) MicroRNA-17–92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke 48(3):747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin H, Li Y, Chopp M (2014) Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci 8:377

    Article  PubMed  PubMed Central  Google Scholar 

  • Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M (2013a) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33(11):1711–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y et al (2013b) MiR-133b Promotes Neural Plasticity and Functional Recovery After Treatment of Stroke with Multipotent Mesenchymal Stromal Cells in Rats Via Transfer of Exosome-Enriched Extracellular Particles. STEM CELLS 31(12):2737–2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin H, Wang F, Li Y, Lu Q-E, Cheung WL, Zhang Y et al (2017b) Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA 133b-overexpressing multipotent mesenchymal stromal cells. Cell Transplant 26(2):243–257

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant 81760349, 81560319) and Applied Basic Research Foundation of Yunnan Province (Grant 2016FB130).

Author information

Authors and Affiliations

Authors

Contributions

RW and WZ contributed to the conception and design of the study. LZ, WH, XS and YH performed the experiments, and analyzed and interpreted data. RW and WZ drafted and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Ethics Approval and Consent to Participate

The present study was approved by the Laboratory Animal Ethics Review Committee of Kunming Medical University (Kunming, China).

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, R., Zhang, L., Hu, W. et al. Zeb2/Axin2-Enriched BMSC-Derived Exosomes Promote Post-Stroke Functional Recovery by Enhancing Neurogenesis and Neural Plasticity. J Mol Neurosci 72, 69–81 (2022). https://doi.org/10.1007/s12031-021-01887-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-021-01887-7

Keywords

Navigation