Skip to main content
Log in

Elastic Shape Analysis of Planar Objects Using Tensor Field Representations

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Shape analysis of objects in images is a critical area of research, and several approaches, including those that utilize elastic Riemannian metrics, have been proposed. While elastic techniques for shape analysis of curves are pretty advanced, the corresponding results for higher-dimensional objects (surfaces and disks) are less developed. This paper studies shapes of solid planar objects that are embeddings of a compact domain—a unit square or a unit disk—in \({\mathbb {R}}^2\). Specifically, it introduces a mathematical representation of objects using tensor fields and uses a re-parametrization-invariant Riemannian metric on these tensor fields to analyze object shapes elastically. The essential contribution here is developing an efficient numerical technique to map tensor fields back to the object space, allowing one to approximate geodesic paths in these objects’ shape spaces. Finally, the paper extends this framework to reach landmark-driven registration and improve geodesic computations. The paper illustrates this framework using several simulated and natural objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Bauer, M., Bruveris, M., Marsland, S., Michor, P.W.: Constructing reparameterization invariant metrics on spaces of plane curves. Differ. Geom. Appl. 34, 139–165 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bauer, M., Bruveris, M., Michor, P.W.: R-transforms for sobolev \(h^2\)-metrics on spaces of plane curves. Geom. Imaging Comput. 1(1), 1–56 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bauer, M., Klassen, E., Preston, S.C., Su, Z.: A diffeomorphism-invariant metric on the space of vector-valued one-forms. arXiv preprint arXiv:1812.10867, (2018)

  4. Bauer, M., Joshi, S., Modin, K.: Diffeomorphic density registration. In Riemannian Geometric Statistics in Medical Image Analysis, pp 577 – 603. Academic Press, (2020)

  5. Beg, M.F., Miller, I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Article  Google Scholar 

  6. Brigant, A.L.: Computing distances and geodesics between manifold-valued curves in the SRV framework. arXiv:1601.02358, (2016)

  7. Clarke, B.: Geodesics, distance, and the cat (0) property for the manifold of riemannian metrics. Math. Z. 273(1–2), 55–93 (2013)

    Article  MathSciNet  Google Scholar 

  8. Ebin, D.G.: The manifold of riemannian metrics. In: Global analysis, berkeley, calif., 1968. In Proc. Sympos. Pure Math. 15, pp 11–40 (1970)

  9. Edwards, K.A., Doescher, L.T., Kaneshiro, K.Y., Yamamoto, D.: A database of wing diversity in the hawaiian drosophila. PLoS ONE 2(5), e487 (2007)

    Article  Google Scholar 

  10. Freed, D.S., Groisser, David, et al.: The basic geometry of the manifold of riemannian metrics and of its quotient by the diffeomorphism group. Mich. Math. J. 36(3), 323–344 (1989)

    Article  MathSciNet  Google Scholar 

  11. Gil-Medrano, O., Michor, P.W.: The riemannian manifold of all riemannian metrics. Q. J. Math. 42(1), 183 (1991)

    Article  MathSciNet  Google Scholar 

  12. Gil-Medrano, O., Michor, P.W., Neuwirther, M.: Pseudo-riemannian metrics on spaces of bilinear structures. Q. J. Math. Oxford 43, 201–221 (1992)

    Article  MathSciNet  Google Scholar 

  13. Gupta, M.D., Nath, U.: Divergence in patterns of leaf growth polarity is associated with the expression divergence of mir396. Plant Cell 27(10), 2785–2799 (2015)

    Google Scholar 

  14. Joshi, S.C., Miller, M.I.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process. 9(8), 1357–1370 (2000)

    Article  MathSciNet  Google Scholar 

  15. Klassen, E., Srivastava, A., Mio, M., Joshi, Shantanu H.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 372–383 (2004)

    Article  Google Scholar 

  16. Kurtek, S., Srivastava, A., Klassen, E., Laga, H.: Landmark-guided elastic shape analysis of spherically-parameterized surfaces. Comput. Graph. Forum 32(2), 429–438 (2013)

    Article  Google Scholar 

  17. Laga, H., Xie, Q., Jermyn, I.H., Srivastava, A.: Numerical inversion of srnf maps for elastic shape analysis of genus-zero surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2451–2464 (2017)

    Article  Google Scholar 

  18. Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8, 1–48 (2006)

    Article  MathSciNet  Google Scholar 

  19. Mio, W., Srivastava, A., Joshi, S.: On shape of plane elastic curves. Int. J. Comput. Vis. 73(3), 307–324 (2007)

    Article  Google Scholar 

  20. Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.H.: Shape analysis of elastic curves in euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(7), 1415–1428 (2011)

    Article  Google Scholar 

  21. Su, J., Kurtek, S., Klassen, E., Srivastava, A.: Statistical analysis of trajectories on Riemannian manifolds: bird migration, hurricane tracking and video surveillance. Ann. Appl. Stat. 8(1), 530–552 (2014). (03)

    Article  MathSciNet  Google Scholar 

  22. Younes, L., Michor, P.W., Shah, J., Mumford, D., Lincei, R.: A metric on shape space with explicit geodesics. Math. E Appl. 19(1), 25–57 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58(2), 565–586 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Grants NSF DMS-1621787, NSF CDS&E DMS 1953087, and NIH R01 GM126558. The authors thank Prof. Eric Klassen of FSU for fruitful discussions on this topic and for providing feedback on this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiyi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Geometry of \(\mathrm{{Sym}}^+(n)\)

Appendix: Geometry of \(\mathrm{{Sym}}^+(n)\)

For any \(A\in \mathrm{{Sym}}^+(n)\) and \(U, V\in T_A\mathrm{{Sym}}^+(n)\), consider the following Riemannian metric defined on \(\mathrm{{Sym^+(n)}}\)

$$\begin{aligned} \begin{aligned} \langle U, V\rangle _A&=\left( {\mathrm{{tr}}}\left( A^{-1}U_0A^{-1}V_0\right) \right. \\&\left. \quad +\kappa {\mathrm{{tr}}}\left( A^{-1}U\right) {\mathrm{{tr}}}\left( A^{-1}V\right) \right) \sqrt{\det A}, \end{aligned} \end{aligned}$$
(10)

where \(\kappa >0\), \(U_0 = U - \frac{1}{n}{\mathrm{{tr}}}(A^{-1}U)A\) and \(V_0 = V - \frac{1}{n}{\mathrm{{tr}}}(A^{-1}V)A\) satisfying \({\mathrm{{tr}}}(A^{-1}U_0)=0\) and \({\mathrm{{tr}}}(A^{-1}V_0) = 0\). This Riemannian metric was first introduced in [12] and is termed the split Ebin metric. The geometric structure of \(\mathrm{{Sym^+(n)}}\) endowed with the split Ebin metric was studied thoroughly in [12] and we borrow some results from it directly.

Theorem 3

Let \(A\in \mathrm{{Sym}}^+(n)\) and \(K\in T_A\mathrm{{Sym}}^+(n)\). Define \(q = 1+\frac{{\mathrm{{tr}}}(A^{-1}K)}{4},\) \(\theta = \frac{\sqrt{\kappa ^{-1}{\mathrm{{tr}}}\left( A^{-1}K_0A^{-1}K_0\right) }}{4}\), where \(K_0 = K - \frac{1}{n}{\mathrm{{tr}}}(A^{-1}K)A\) satisfying \({\mathrm{{tr}}}(A^{-1}K_0)=0\). Then, the exponential map starting at A in the direction of K is given by

$$\begin{aligned} \begin{aligned}&\mathrm{{Exp}}_A(K) \\&= {\left\{ \begin{array}{ll} \left( q^2+\theta ^2\right) ^{\frac{2}{n}}A\exp \left( \frac{\arctan (\theta /q)}{\theta }A^{-1}K_0\right) \quad \text {if} \ K_0\ne 0,\\ q^{\frac{4}{n}}A \quad \text {if} \ K_0=0. \end{array}\right. } \end{aligned} \end{aligned}$$
(11)

Theorem 4

Let \(A, B \in \mathrm{{Sym}}^+(n)\), we have K \(=\) \(A\log (A^{-1}B) \in \mathcal{{U}}\) \(=\) \(T_A\mathrm{{Sym}}^+(n)\backslash (-\infty ,-4/n]A\). Then the inverse of the exponential map is given by the following:

$$\begin{aligned} \begin{aligned}&\mathrm{{Exp}}^{-1}_A(B) = \\&{\left\{ \begin{array}{ll} \frac{4}{n}\left( \beta \cos \theta -1\right) A +\frac{1}{\theta }\beta \sin \theta K_0 \quad &{}\text {if} \ K_0\ne 0,\\ \frac{4}{n}\left( \beta -1\right) A \quad &{}\text {if} \ K_0=0, \end{array}\right. } \end{aligned} \end{aligned}$$
(12)

where \(\beta =\exp \left( \frac{{\mathrm{{tr}}}(A^{-1}K)}{4}\right) \), \(K_0\) and \(\theta \) are define as Theorem 3.

Then, the geodesic on \(\mathrm{{Sym}}^+(n)\) can be solved explicitly.

Theorem 5

Let \(A, B \in \mathrm{{Sym}}^+(n)\), \(u \triangleq \mathrm{{Exp}}^{-1}_A(B)\), the geodesic between A and B is given as

$$\begin{aligned} \phi (t) = \mathrm{{Exp}}_A(ut), t \in [0,1]. \end{aligned}$$
(13)

Let \(\mathcal{{M}}\) be the space of positive semi-definite symmetric matrices. Then the metric completion of \(\mathrm{{Sym}}^+(n)\) is given by \({\mathcal{{M}}}/\sim \), where \(A\sim B\) if they are both degenerate.

When \(\kappa = \frac{1}{n}\), we call the Riemannian metric in Eq. 10 as the standard Ebin metric. It is the usual metric on the space of all Riemannian metrics considered by [8, 10, 11]. [7] gives the geodesic distance between any two matrices in \(\mathrm{{Sym}}^+(n)\) of the standard Ebin metric as follows.

Theorem 6

For \(A, B\in \mathrm{{Sym}}^+(n)\). Let \(K = A\log (A^{-1}B)\). Then the square of the geodesic distance for the metric (10) between A and B is given by

$$\begin{aligned} \begin{aligned} d(A, B)^2&= \frac{16}{n}\left( \sqrt{\det (A)} -2\root 4 \of {\det (A)}\root 4 \of {\det (B)}\cos \theta \right. \\&\left. \quad + \sqrt{\det (B)}\right) , \end{aligned} \end{aligned}$$
(14)

where \(\theta = \min \left\{ \pi , \frac{\sqrt{n{\mathrm{{tr}}}(A^{-1}K_0A^{-1}K_0)}}{4}\right\} \), \(K_0\) is defined as Theorem 3.

In this paper, we use the standard Ebin metric (\(\kappa = \frac{1}{2}\)) for computation.

Using these point wise geodesics, we can compute a geodesic path between any two elements of \(\mathcal{{G}}\). For any \(g_1, g_2 \in \mathcal{{G}}\), let \(\varPhi (s,t) = \phi (t)\), where \(\phi \) is a parameterized geodesic between \(g_1(s)\) and \(g_2(s)\) in \({\text {Sym}}^+(2)\), for all \(s \in D\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Srivastava, A. Elastic Shape Analysis of Planar Objects Using Tensor Field Representations. J Math Imaging Vis 63, 1204–1221 (2021). https://doi.org/10.1007/s10851-021-01047-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-021-01047-x

Keywords

Navigation