Skip to main content
Log in

Petrochemistry and Zircon U-Pb Geochronology of Felsic Xenoliths in Late Cenozoic Gem-Related Basalt from Bo Phloi Gem Field, Kanchanaburi, Western Thailand

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The Cenozoic basalts exposed in Bo Phloi Gem Field, Kanchanaburi Province, western Thailand are a host to different gem materials (e.g., sapphire, black spinel, black pyroxene and zircon) as well as other xenocrysts and xenoliths from the deep-seated formations onto the earth surface. However, only felsic xenoliths have never been investigated and reported in detail though they are in fact significant evidence of ancient tectonic processes of this area. In this study, the felsic xenoliths were sampled and classified, on the basis of petrochemistry, into granite, syenogranite, and syenite. However, they contain similar mineral assemblages including essentials of quartz, K-feldspar, and plagioclase with different proportions and accessories of biotite, zircon, and opaque minerals. Moreover, large phenocrysts of K-feldspar and plagioclase commonly present as a primary texture which are frequently corroded and replaced by ‘sieved texture’ with secondary cumulative fringe of tiny feldspar and quartz. These secondary textures clearly indicate quenching after re-heating during transportation by basaltic magma. Geochemical analyses indicate that the alkaline and peraluminous magma show enrichment of Rb and depletion of Ba, Nb, Ta, Ti with steep slope of LREE/HREE enrichment patterns. These evidences suggest low-degree partial melting of crustal materials related to the collisional S-type granite magmatism. In addition, U-Pb dating of zircon from a felsic xenolith yields 211.6±1.3 Ma comparable to the Late Triassic magmatism of the central belt granite in this region which is resulted from the collision between Sibumasu and Indochina terranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References Cited

  • Aspen, P., Upton, B. G. J., Dickin, A. P., 1990. Anorthoclase, Sanidine and Associated Megacrysts in Scottish Alkali Basalts: High-Pressure Syenitic Debris from Upper Mantle Sources?. European Journal of Mineralogy, 2(4): 503–518. https://doi.org/10.1127/ejm/2/4/0503

    Article  Google Scholar 

  • Barr, S. M., Charusiri, P., 2011. Volcanic Rocks in Thailand. In: Ridd, M. F., Barber, A. J., Crow, M. J., eds., The Geology of Thailand. Geological Society, London. 415–439

    Chapter  Google Scholar 

  • Barr, S. M., MacDonald, A. S., 1978. Geochemistry and Petrogenesis of Late Cenozoic Alkaline Basalts of Thailand. Bulletin of the Geological Society of Malaysia, 10: 25–52. https://doi.org/10.7186/bgsm10197803

    Article  Google Scholar 

  • Barr, S. M., MacDonald, A. S., 1981. Geochemistry and Geochronology of Late Cenozoic Basalts of Southeast Asia: Summary. Geological Society of America Bulletin, 92(8): 508. https://doi.org/10.1130/0016-7606(1981)92<508:gagolc>2.0.co;2

    Article  Google Scholar 

  • Beckinsale, R. D., 1979. Granite Magmatism in the Tin Belt of Southeast Asia. In: Atherton, M. P., Tarney, J., eds., Origin of Granite Batholiths. Shiva Publishing, Kent. 34–44

    Chapter  Google Scholar 

  • Beckinsale, R. D., Suensilpong, S., Nakapadungrat, S., et al., 1979. Geochronology and Geochemistry of Granite Magmatism in Thailand in Relation to a Plate Tectonic Model. Journal of the Geological Society, 136(5): 529–537. https://doi.org/10.1144/gsjgs.136.5.0529

    Article  Google Scholar 

  • Belousova, E. B., Griffin, W. L., O’Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602–622. https://doi.org/10.1007/s00410-002-0364-7

    Article  Google Scholar 

  • Bignell, J. D., Snelling, N. J., 1977. The Geochronology of Malayan Granites. Overseas Geology and Mineral Resources, 47: 1–72

    Google Scholar 

  • Bunopas, S., 1981. Palaeogeographic History of Western Thailand and Adjacent Parts of Southeast Asia: A Plate Tectonic Interpretation: [Dissertation]. Victoria University, Wellington. 810

    Google Scholar 

  • Bunopas, S., Bunjitradulya, P., 1975. Geology of Amphoe Bo Phloi, North Kanchanaburi with Spacial Notes on the Kanchanaburi Series. Journal of Geological Society of Thailand, 1: 51–67 (in Thai with English Abstract)

    Google Scholar 

  • Bunopas, S., Marante, S., Vella, P., 1989. Palaeozoic and Early Mesozoic Rotation and Drifting of Shan-Thai from Gondwana-Australia. In: 4th International Symposium on Pre-Jurassic Evolution of East Asia, IGCP Project 224, Reports and Abstracts. 63–64

  • Bunopas, S., Vella, P., 1983. Tectonic and Geologic Evolution of Thailand. Proceedings of the Workshop on Stratigraphic Correlation of Thailand and Malaysia, Had Yai. 307–323 (in Thai with English Abstract)

  • Bunopas, S., Vella, P., 1992. Geotectonic and Geologic Evolution of Thailand. Proceedings of the National Conference on Geologic Resources of Thailand: Potential for Future Development, Department of Mineral Resource, Ministry of Industry, Bangkok, Thailand. 209–228 (in Thai with English Abstract)

    Google Scholar 

  • Chappell, B. W., White, A. J. R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173–174

    Google Scholar 

  • Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x

    Article  Google Scholar 

  • Charusiri, P., 1989. Lithophilemetallogenetic Epochs of Thailand: A Geological and Geochronological Investigation: [Dissertation]. Queen’s University, Ontario. 819

    Google Scholar 

  • Charusiri, P., Clark, A. H., Farrar, E., et al., 1993. Granite Belts in Thailand: Evidence from the 40Ar/39Ar Geochronological and Geological Syntheses. Journal of Southeast Asian Earth Sciences, 8(1/2/3/4): 127–136. https://doi.org/10.1016/0743-9547(93)90014-g

    Article  Google Scholar 

  • Charusiri, P., Daorerk, V., Archibald, D., et al., 2002. Geotectonic Evolution of Thailand: A New Synthesis. Journal of Geological Society of Thailand, 1: 1–20 (in Thai with English Abstract)

    Google Scholar 

  • Chen, C., Lü, X. B., Wu, C. M., et al., 2017. Origin and Geodynamic Implications of Concealed Granite in Shadong Tungsten Deposit, Xinjiang, China: Zircon U-Pb Chronology, Geochemistry, and Sr-Nd-Hf Isotope Constraint. Journal of Earth Science, 29(1): 114–129. https://doi.org/10.1007/s12583-017-0808-7

    Article  Google Scholar 

  • Chualaowanich, T., Sutthirat, C., Harzenberger, C., et al., 2005. Another Constraint on Thai-Corundum Genesis: New Evidence from Ruby-Bearing Xenoliths from the Eastern Gem Field, Thailand. Internal Conference on Geology, Geotechnology and Mineral Resources of Indochina (GEOINDO 2005), KhonKaen, Thailand. 345 (in Thai with English Abstract)

  • Clarke, M. C. G., Beddoe-Stephens, B., 1987. Geochemistry, Mineralogy and Plate Tectonic Setting of a Late Cretaceous Sn-W Granite from Sumatra, Indonesia. Mineralogical Magazine, 51(361): 371–387. https://doi.org/10.1180/minmag.1987.051.361.04

    Article  Google Scholar 

  • Cobbing, E. J., Mallick, D. I. J., Pitfield, P. E. J., et al., 1986. The Granites of the Southeast Asian Tin Belt. Journal of the Geological Society, 143(3): 537–550. https://doi.org/10.1144/gsjgs.143.3.0537

    Article  Google Scholar 

  • Cobbing, E. J., Pitfield, P. E. J., Derbyshire, D. P. F., et al., 1992. The Granites of the Southeast Asian Tin Belt. Overseas Memoirs of the British Geological Survey, KhonKaen. 10 (in Thai with English Abstract)

    Google Scholar 

  • Coenraads, R. R., 1990. Key Areas for Alluvial Diamond and Sapphire Exploration in the New England Gem Fields, New South Wales, Australia. Economic Geology, 85: 1186–1207

    Article  Google Scholar 

  • Coenraads, R. R., 1992. Surface Features on Natural Rubies and Sapphires Derived from Volcanic Provinces. The Journal of Gemmology, 23(3): 151–160. https://doi.org/10.15506/jog.1992.233.151

    Article  Google Scholar 

  • Coenraads, R. R., Sutherland, F. L., Kinny, P. D., 1990. The Origin of Sapphires: U-Pb Dating of Zircon Inclusions Sheds New Light. Mineralogical Magazine, 54(374): 113–122. https://doi.org/10.1180/minmag.1990.054.374.13

    Article  Google Scholar 

  • Coenraads, R. R., Vichit, P., Sutherland, F. L., 1995. An Unusual Sapphire-Zircon-Magnetite Xenolith from the Chanthaburi Gem Province, Thailand. Mineralogical Magazine, 59(396): 465–479. https://doi.org/10.1180/minmag.1995.059.396.08

    Article  Google Scholar 

  • Cox, K. G., Bell, B. G., Pankhurst, R. J., 1979. The Interpretation of Igneous Rocks. Unwin Hyman, London. 450

    Book  Google Scholar 

  • Darbyshire, F., 1988. Geochronology of Thai Granites. NERC Isotope Geology Centre Report, 88(5): 46

    Google Scholar 

  • Department of Mineral Resources, 1977. Geological Map of Thailand 1: 250 000. Changwat Suphan Buri, Bangkok, Thailand (in Thai with English Abstract)

    Google Scholar 

  • Dunning, G. R., MacDonald, A. S., Barr, S. M., 1995. Zircon and Monazite U-Pb Dating of the Doi Inthanon Core Complex, Northern Thailand: Implications for Extension within the Indosinian Orogen. Tectonophysics, 251(1/2/3/4): 197–213. https://doi.org/10.1016/0040-1951(95)00037-2

    Article  Google Scholar 

  • Eggins, S. M., Kinsley, L. P. J., Shelley, J. M. G., 1998. Deposition and Element Fractionation Processes during Atmospheric Pressure Laser Sampling for Analysis by ICP-MS. Applied Surface Science, 127–129: 278–286. https://doi.org/10.1016/s0169-4332(97)00643-0

    Article  Google Scholar 

  • Fanka, A., 2016. Pertogenesis of Plutonic Complex in Wang Nam Khiao Area, Changwat Nakhon Ratchasima: [Dissertation]. Chulalongkorn University, Bangkok. 138 (in Thai with English Abstract)

    Google Scholar 

  • Fanka, A., Tsunogae, T., Daorerk, V., et al., 2016. Petrochemistry and Mineral Chemistry of Late Permian Hornblendite and Hornblende Gabbro from the Wang Nam Khiao Area, Nakhon Ratchasima, Thailand: Indication of Palaeo-Tethyan Subduction. Journal of Asian Earth Sciences, 130: 239–255. https://doi.org/10.1016/j.jseaes.2016.11.018

    Article  Google Scholar 

  • Fanka, A., Tsunogae, T., Daorerk, V., et al., 2018. Petrochemistry and Zircon U-Pb Geochronology of Granitic Rocks in the Wang Nam Khiao Area, Nakhon Ratchasima, Thailand: Implications for Petrogenesis and Tectonic Setting. Journal of Asian Earth Sciences, 157: 92–118. https://doi.org/10.1016/j.jseaes.2017.08.025

    Article  Google Scholar 

  • Fedrov, P. I., Koloskov, A. V., 2005. Cenozoic Volcanism of Southeast Asia. Petrology, 13: 352–380

    Google Scholar 

  • Ferrari, O. M., Hochard, C., Stampfli, G. M., 2008. An Alternative Plate Tectonic Model for the Palaeozoic-Early Mesozoic Palaeotethyan Evolution of Southeast Asia (Northern Thailand-Burma). Tectonophysics, 451(1/2/3/4): 346–365. https://doi.org/10.1016/j.tecto.2007.11.065

    Article  Google Scholar 

  • Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033

    Article  Google Scholar 

  • Gardiner, N. J., Searle, M. P., Morley, C. K., et al., 2016. The Closure of Palaeo-Tethys in Eastern Myanmar and Northern Thailand: New Insights from Zircon U-Pb and Hf Isotope Data. Gondwana Research, 39: 401–422. https://doi.org/10.1016/j.gr.2015.03.001

    Article  Google Scholar 

  • Gou, Z. B., Dong, X., Wang, B. D., 2019. Petrogenesis and Tectonic Implications of the Paiku Leucogranites, Northern Himalaya. Journal of Earth Science, 30(3): 525–534. https://doi.org/10.1007/s12583-019-1219-8

    Article  Google Scholar 

  • Grosse, P., Bellos, L. I., de los Hoyos, C. R., et al., 2011. Across-Arc Variation of the Famatinian Magmatic Arc (NW Argentina) Exemplified by I-, S- and Transitional I/S-Type Early Ordovician Granitoids of the Sierra de Velasco. Journal of South American Earth Sciences, 32(1): 110–126. https://doi.org/10.1016/j.jsames.2011.03.014

    Article  Google Scholar 

  • Guo, J., O’Reilly, S. Y., Griffin, W. L., 1996. Corundum from Basaltic Terrains: A Mineral Inclusion Approach to the Enigma. Contributions to Mineralogy and Petrology, 122(4): 368–386. https://doi.org/10.1007/s004100050134

    Article  Google Scholar 

  • Harker, A., 1909. The Natural History of Igneous Rocks. Methuen, London

    Google Scholar 

  • Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. https://doi.org/10.2113/0530027

    Article  Google Scholar 

  • Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7): 627–630. https://doi.org/10.1130/0091-7613(2000)28<627:reecoz>2.0.co;2

    Article  Google Scholar 

  • Hutchison, C. S., 1989. Geological Evolution of South-East Asia. Cambridge University Press, Cambridge

    Google Scholar 

  • Intasopa, S., 1993. Petrology and Geochronology of the Volcanic Rocks of the Central Thailand Volcanic Belt: [Dissertation]. University of New Brunswick, Fredericton. 242

    Google Scholar 

  • Ishihara, S., 1977. The Magnetite-Series and Ilmenite-Series Granitic Rocks. Mining Geology, 27: 293–305

    Google Scholar 

  • Izokh, A. E., Smirnov, S. Z., Egorova, V. V., et al., 2010. The Conditions of Formation of Sapphire and Zircon in the Areas of Alkali-Basaltoid Volcanism in Central Vietnam. Russian Geology and Geophysics, 51(7): 719–733. https://doi.org/10.1016/j.rgg.2010.06.001

    Article  Google Scholar 

  • Jungyusuk, N., Khositanont, S., 1992. Volcanic Rocks and Associated Mineralization in Thailand. Proceedings of National Conference on Geologic Resources of Thailand: Potential for Future, Development, Bangkok. 522–538 (in Thai with English Abstract)

  • Kaczmarek, M. A., Müntener, O., Rubatto, D., 2007. Trace Element Chemistry and U-Pb Dating of Zircons from Oceanic Gabbros and Their Relationship with Whole Rock Composition (Lanzo, Italian Alps). Contributions to Mineralogy and Petrology, 155(3): 295–312. https://doi.org/10.1007/s00410-007-0243-3

    Article  Google Scholar 

  • Kamvong, T., Zaw, K., Meffre, S., et al., 2014. Adakites in the Truong Son and Loei Fold Belts, Thailand and Laos: Genesis and Implications for Geodynamics and Metallogeny. Gondwana Research, 26(1): 165–184. https://doi.org/10.1016/j.gr.2013.06.011

    Article  Google Scholar 

  • Khamloet, P., 2011. Mineral Chemistry of Inclusions in Basaltic Sapphire from Southeast Asia: [Dissertation]. Chulalongkorn University, Bangkok. 185 (in Thai with English Abstract)

    Google Scholar 

  • Khamloet, P., Pisutha-Arnond, V., Sutthirat, C., 2014. Mineral Inclusions in Sapphire from the Basalt-Related Deposit in Bo Phloi, Kanchanaburi, Western Thailand: Indication of Their Genesis. Russian Geology and Geophysics, 55(9): 1087–1102. https://doi.org/10.1016/j.rgg.2014.08.004

    Article  Google Scholar 

  • Koskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. https://doi.org/10.2113/0530027

    Article  Google Scholar 

  • Lee, H. Y., Chung, S. L., Yang, H. M., 2016. Late Cenozoic Volcanism in Central Myanmar: Geochemical Characteristics and Geodynamic Significance. Lithos, 245: 174–190. https://doi.org/10.1016/j.lithos.2015.09.018

    Article  Google Scholar 

  • Levinson, A. A., Cook, F. A., 1994. Gem Corundum in Alkali Basalt: Origin and Occurrence. Gems & Gemology, 30(4): 253–262. https://doi.org/10.5741/gems.30.4.253

    Article  Google Scholar 

  • Liew, T. C., Page, R. W., 1985. U-Pb Zircon Dating of Granitoid Plutons from the West Coast Province of Peninsular Malaysia. Journal of the Geological Society, 142(3): 515–526. https://doi.org/10.1144/gsjgs.142.3.0515

    Article  Google Scholar 

  • Linnen, R. L., Keppler, H., 2002. Melt Composition Control of Zr/Hf Fractionation in Magmatic Processes. Geochimica et Cosmochimica Acta, 66(18): 3293–3301. https://doi.org/10.1016/s0016-7037(02)00924-9

    Article  Google Scholar 

  • Ludwig, K. R., 2008. User’s Manual for Isoplot 3.70. Berkeley Geochronology Center Special Publication, Berkeley. 4: 70

    Google Scholar 

  • MacDonald, A. S., Barr, S. M., Dunning, G. R., et al., 1991. The Doi Inthanon Metamorphic Core Complex in NW Thailand: Age and Tectonic Significance. GEOSEA VII, Paper Presented at the Seventh Conference on Geology and Mineral Resources of Southeast Asia, Bangkok, Thailand. 30 (in Thai with English Abstract)

  • MacDonald, A. S., Barr, S. M., Dunning, G. R., et al., 1993. The Doi Inthanon Metamorphic Core Complex in NW Thailand: Age and Tectonic Significance. Journal of Southeast Asian Earth Sciences, 8(1/2/3/4): 117–125. https://doi.org/10.1016/0743-9547(93)90013-f

    Article  Google Scholar 

  • McCabe, R., Celaya, M., Cole, J., et al., 1988. Extension Tectonics: The Neogene Opening of the North-South Trending Basins of Central Thailand. Journal of Geophysical Research, 93(B10): 11899. https://doi.org/10.1029/jb093ib10p11899

    Article  Google Scholar 

  • Metcalfe, I., 2002. Permian Tectonic Framework and Palaeogeography of SE Asia. Journal of Asian Earth Sciences, 20(6): 551–566. https://doi.org/10.1016/s1367-9120(02)00022-6

    Article  Google Scholar 

  • Metcalfe, I., 2011a. Tectonic Framework and Phanerozoic Evolution of Sundaland. Gondwana Research, 19(1): 3–21. https://doi.org/10.1016/j.gr.2010.02.016

    Article  Google Scholar 

  • Metcalfe, I., 2011b. Palaeozoic-Mesozoic History of SE Asia. Geological Society, London, Special Publications, 355(1): 7–35. https://doi.org/10.1144/sp355.2

    Article  Google Scholar 

  • Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1–33. https://doi.org/10.1016/j.jseaes.2012.12.020

    Article  Google Scholar 

  • Mitchell, A. H. G., 1977. Tectonic Settings for Emplacement of Southeast Asian Tin Granites. Bulletin of the Geological Society of Malaysia, 9: 123–140. https://doi.org/10.7186/bgsm09197710

    Article  Google Scholar 

  • Morley, C. K., Ampaiwan, P., Thanudamrong, S., et al., 2013. Development of the Khao Khwang Fold and Thrust Belt: Implications for the Geodynamic Setting of Thailand and Cambodia during the Indosinian Orogeny. Journal of Asian Earth Sciences, 62: 705–719. https://doi.org/10.1016/j.jseaes.2012.11.021

    Article  Google Scholar 

  • Nakapadungrat, S., 1982. The Geochronology and Geochemistry of the Thong Lang Granite Complex, Central Thailand: [Dissertation]. University of London, London

    Google Scholar 

  • Nakapadungrat, S., Beckinsal, R. D., Suensilpong, S., 1985. Geochronology and Geology of Thai Granites. Proceeding of Conference on Applications of Geology and the National Development, Chulalongkorn University. Bangkok, Thailand. 75–93 (in Thai with English Abstract)

  • Nakapadungrat, S., Putthapiban, P., 1992. Granites and Associated Mineralization in Thailand. Proceeding of National Conference on Geologic Resources of Thailand: Potential for Future Development. Departmaent of Mineral Resources, Bangkok, Thailand. 153–171 (in Thai with English Abstract)

  • Nantasin, P., Hauzenberger, C., Liu, X. M., et al., 2012. Occurrence of the High Grade Thabsila Metamorphic Complex within the Low Grade Three Pagodas Shear Zone, Kanchanaburi Province, Western Thailand: Petrology and Geochronology. Journal of Asian Earth Sciences, 60: 68–87. https://doi.org/10.1016/j.jseaes.2012.07.025

    Article  Google Scholar 

  • Paces, J. B., Miller, J. D. Jr., 1993. Precise U-Pb Ages of Duluth Complex and Related Mafic Intrusions, Northeastern Minnesota: Geochronological Insights to Physical, Petrogenetic, Paleomagnetic, and Tectonomagmatic Processes Associated with the 1.1 Ga Midcontinent Rift System. Journal of Geophysical Research: Solid Earth, 98(B8): 13997–14013. https://doi.org/10.1029/93jb01159

    Article  Google Scholar 

  • Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956

    Article  Google Scholar 

  • Pisutha-Arnold, V., Wathanakul, P., Intasopa, S., et al., 1998. Corsilzirspite, a Corundum Silimanite-Zircon-Hercynite Rock: New Evidence on the Origin of Kanchanaburi Sapphire, Thailand. Proceedings of the Ninth Regional Congress on Geology, Mineral and Energy Resources of South East Asia GEOSEA 98, Kuala Lumpur. 95–96

  • Punyaprasiddhi, P., 1980. Investigation of the Geology and Mineralization of Tin-Tungsten of Samoeng Mine Area, Northern Thailand: [Dissertation]. University of Sheffield, Sheffield

    Google Scholar 

  • Putthapiban, P., 2002. Geology and Geochronology of the Igneous Rocks of Thailand. The Symposium on Geology of Thailand, Bangkok, Thailand. 261–283

  • Raksaskulwong, L., Wongwanich, T., 1994. Stratigraphy of Kaeng Krachan Group in Peninsular and Western Thailand. Annual Technical Meeting of Geological Survey Division, Bangkok, Thailand. 106–115 (in Thai with English Abstract)

  • Ridd, M. F., 2012. The Role of Strike-Slip Faults in the Displacement of the Palaeotethys Suture Zone in Southeast Thailand. Journal of Asian Earth Sciences, 51: 63–84. https://doi.org/10.1016/j.jseaes.2012.01.018

    Article  Google Scholar 

  • Rolland, Y., Galoyan, G., Bosch, D., et al., 2009. Jurassic Back-Arc and Cretaceous Hot-Spot Series in the Armenian Ophiolites—Implications for the Obduction Process. Lithos, 112(3/4): 163–187. https://doi.org/10.1016/j.lithos.2009.02.006

    Article  Google Scholar 

  • Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation and Interpretation. Longman Scientific and Technical Ltd., Harlow. 352

    Google Scholar 

  • Saminpanya, S., 2000. Mineralogy and Origin of Gem Corundum Associated with Basalt in Thailand: [Dissertation]. University of Manchester, Manchester

    Google Scholar 

  • Searle, M. P., Whitehouse, M. J., Robb, L. J., et al., 2012. Tectonic Evolution of the Sibumasu-Indochina Terrane Collision Zone in Thailand and Malaysia: Constraints from New U-Pb Zircon Chronology of SE Asian Tin Granitoids. Journal of the Geological Society, 169(4): 489–500. https://doi.org/10.1144/0016-76492011-107

    Article  Google Scholar 

  • Shand, S. J., 1943. Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite. John Wiley & Sons, New York

    Google Scholar 

  • Shi, H. F., Wang, J. P., Yao, Y., et al., 2020. Geochemistry and Geochronology of Diorite in Pengshan Area of Jiangxi Province: Implications for Magmatic Source and Tectonic Evolution of Jiangnan Orogenic Belt. Journal of Earth Science, 31(1): 23–34. https://doi.org/10.1007/s12583020-0875-z

    Article  Google Scholar 

  • Smith, J. V., Brown, W. L., 1974. Feldspar Minerals. Springer-Verlag, Berlin. 1–690

    Google Scholar 

  • Sone, M., Metcalfe, I., 2008. Parallel Tethyan Sutures in Mainland Southeast Asia: New Insights for Palaeo-Tethys Closure and Implications for the Indosinian Orogeny. Comptes Rendus Geoscience, 340(2/3): 166–179. https://doi.org/10.1016/j.crte.2007.09.008

    Article  Google Scholar 

  • Srithai, B., 2005. Petrography and Mineral Chemistry of Ultramafic Xenoliths from Bo Ploi Basalt, Kanchanaburi, Thailand. Proceedings of the International Conference on Geology, Geotechnology and Mineral Resource of Indochina, Bangkok, Thailand. 358–364 (in Thai with English Abstract)

  • Stacey, J. S., Kramers, J. D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters, 26(2): 207–221. https://doi.org/10.1016/0012-821x(75)90088-6

    Article  Google Scholar 

  • Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19

    Article  Google Scholar 

  • Sutherland, F. L., 1996. Alkaline Rocks and Gemstones, Australia: A Review and Synthesis. Australian Journal of Earth Sciences, 43(3): 323–343. https://doi.org/10.1080/08120099608728259

    Article  Google Scholar 

  • Sutherland, F. L., Coenraads, R. R., 1996. An Unusual Ruby-Sapphire-Sapphirine-Spinel Assemblage from the Tertiary Barrington Volcanic Province, New South Wales, Australia. Mineralogical Magazine, 60(401): 623–638. https://doi.org/10.1180/minmag.1996.060.401.08

    Article  Google Scholar 

  • Sutherland, F. L., Giuliani, G., Fallick, A. E., et al., 2006. Oxygen Isotopes for Gem Corundums, Eastern Australian Basalt Fields: Results and Genetic Implications. Geochimica et Cosmochimica Acta, 70(18): A630. https://doi.org/10.1016/j.gca.2006.06.1170

    Article  Google Scholar 

  • Sutherland, F. L., Schwarz, D., 2001. Origin of Gem Corundums from Basaltic Fields. Australian Gemmologist, 21 (1): 30–33

    Google Scholar 

  • Sutherland, F. L., Schwarz, D., Jobbins, E. A., et al., 1998a. Distinctive Gem Corundum Suites from Discrete Basalt Fields: A Comparative Study of Barrington, Australia, and West Pailin, Cambodia, Gemfields. The Journal of Gemmology, 26(2): 65–85. https://doi.org/10.15506/jog.1998.26.2.65

    Article  Google Scholar 

  • Sutherland, F. L., Hoskin, P. W. O., Fanning, C. M., et al., 1998b. Models of Corundum Origin from Alkali Basaltic Terrains: A Reappraisal. Contributions to Mineralogy and Petrology, 133(4): 356–372. https://doi.org/10.1007/s004100050458

    Article  Google Scholar 

  • Sutthirat, C., 2001. Petrogenesis of Mantle and Crustal Xenoliths and Xenocrysts in Basaltic Rocks Associated with Corundum Deposits in Thailand: [Dissertation]. University of Manchester, Manchester. 445

    Google Scholar 

  • Sutthirat, C., Charusiri, P., Farrar, E., et al., 1994. New 40Ar/39Ar Geochronology and Characteristics of Some Cenozoic Basalt in Thailand. Proceedings of the International Symposium on: Stratigraphic Correlation of Southeast Asia, Bangkok, Thailand. 306–321 (in Thai with English Abstract)

  • Sutthirat, C., Droop, G. T. R., Henderson, C. M. B., et al., 1999. Petrography and Mineral Chemistry of Xenoliths and Xenocrysts in Thai Corundum-Related Basalts: Implications for the Upper Mantle and Lower Crust beneath Thailand. Proceeding of the Symposium on Mineral, Energy and Water Resources of Thailand: Towards the Year 2000, Bangkok, Thailand. 152–161 (in Thai with English Abstract)

  • Sutthirat, C., Namphet, Y., Shitangkool, N., 2010. Felsic Xenoliths in Corundum-Related Basalt at KhaoLun Tom, Bo Phloi District, Kanchanaburi Province, Western Thailand. Bullentin of Earth Sciences of Thailand, 3: 28–37 (in Thai with English Abstract)

    Google Scholar 

  • Sutthirat, C., Pisutha-arnond, V., Khamloet, P., et al., 2020. Multistages of Original Sapphire Formation Related to Basaltic Magmatism in the Bo Phloi Basaltic Gem Field, Kanchanaburi, Western Thailand: Evidence from Trace Elements and Ages of Zircons. Journal of Asian Earth Sciences, 187: 104068. https://doi.org/10.1016/j.jseaes.2019.104068

    Article  Google Scholar 

  • Sutthirat, C., Saminpanya, S., Droop, G. T. R., et al., 2001. Clinopyroxene-Corundum Assemblages from Alkali Basalt and Alluvium, Eastern Thailand: Constraints on the Origin of Thai Rubies. Mineralogical Magazine, 65(2): 277–295. https://doi.org/10.1180/002646101550253

    Article  Google Scholar 

  • Tapponnier, P., Peltzer, G., Armijo, R., 1986. On the Mechanics of the Collision between India and Asia. Geological Society, London, Special Publications, 19(1): 113–157. https://doi.org/10.1144/gsl.sp.1986.019.01.07

    Article  Google Scholar 

  • Tapponnier, P., Peltzer, G., Le Dain, A. Y., et al., 1982. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology, 10(12): 611. https://doi.org/10.1130/0091-7613(1982)10<611:petian>2.0.co;2

    Article  Google Scholar 

  • Taylor, S. R., Mclennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford

    Google Scholar 

  • Tsutsumi, Y., Horie, K., Sano, T., Miyawaki, R., et al., 2012. LA-ICP-MS and SHRIMP Ages of Zircons in Chevkinite and Monazite Tuffs from the Boso Peninsula, Central Japan. Bulletin of that National Museum of Nature and Science Series C: Geology/Paleontology, 38: 15–32

    Google Scholar 

  • Vichit, P., 1992. Gemstones in Thailand. In: Piancharoen, C., ed., Proceedings of the National Conference on Geologic Resources of Thailand: Potential for Future Development. Department of Mineral Resources, Bangkok, Thailand. 124–150 (in Thai with English Abstract)

    Google Scholar 

  • Vichit, P., Udompornvirat, S., Tritrangan, A., et al., 1988. A Report on Gem Deposits in Wichian Buri Area, Changwat Phetchabun. Economic Geology Report, 61: 145 (in Thai with English Abstract)

    Google Scholar 

  • Vichit, P., Vudhichativanich, S., Hansawek, R., 1978. The Distribution and Some Characteristics of Corundum-Bearing Basalts in Thailand. Journal of the Geological Society of Thailand, 3: 1–38 (in Thai with English Abstract)

    Google Scholar 

  • Wai-Pan Ng, S., Chung, S. L., Robb, L. J., et al., 2015a. Petrogenesis of Malaysian Granitoids in the Southeast Asian Tin Belt: Part 1. Geochemical and Sr-Nd Isotopic Characteristics. Geological Society of America Bulletin, 127(9/10): 1209–1237. https://doi.org/10.1130/b31213.1

    Article  Google Scholar 

  • Wai-Pan Ng, S., Whitehouse, M. J., Searle, M. P., et al., 2015b. Petrogenesis of Malaysian Granitoids in the Southeast Asian Tin Belt: Part 2. U-Pb Zircon Geochronology and Tectonic Model. Geological Society of America Bulletin, 127(9/10): 1238–1258. https://doi.org/10.1130/b31214.1

    Article  Google Scholar 

  • Wang, Q., Zhu, D. C., Zhao, Z. D., et al., 2012. Magmatic Zircons from I-, Sand A-Type Granitoids in Tibet: Trace Element Characteristics and Their Application to Detrital Zircon Provenance Study. Journal of Asian Earth Sciences, 53: 59–66. https://doi.org/10.1016/j.jseaes.2011.07.027

    Article  Google Scholar 

  • Williams, I. S., 1998. U-Th-Pb Geochronology by Ion Microprobe. In: McKibben, M. A., Shanks, W. C., eds., Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology, 7: 1–35

    Google Scholar 

  • Yaemniyom, N., 1982. The Petrochemical Study of Corundum-Bearing Basalts at Boploi District, Kanchanaburi: [Dissertation]. Chulalongkorn University, Bangkok. 100 (in Thai with English Abstract)

    Google Scholar 

  • Yaemniyom, N., Pongsapich, W., 1982. Petrochemistry of the Bo Phloi Basalt, Kanchanaburi Province. Proceedings of the Annual Technical Meeting, Chiang Mai University, Chiang Mai. 19–52 (in Thai with English Abstract)

    Google Scholar 

  • Yan, Q. S., Shi, X. F., Metcalfe, I., et al., 2018. Hainan Mantle Plume Produced Late Cenozoic Basaltic Rocks in Thailand, Southeast Asia. Scientific Reports, 8(1): 207127. https://doi.org/10.1038/s41598-018-20712-7

    Google Scholar 

  • Yoder, S. H. Jr., Steward, D. B., Smith, J. R., 1957. Carnegie Inst. Yearb, Washington DC. 56

  • Zaw, K., Meffre, S., Lai, C. K., et al., 2014. Tectonics and Metallogeny of Mainland Southeast Asia—A Review and Contribution. Gondwana Research, 26(1): 5–30. https://doi.org/10.1016/j.gr.2013.10.010

    Article  Google Scholar 

  • Zaw, K., Rodmanee, T., Khositanont, S., et al., 2007. Geology and Genesis of PhuThap Fah Gold Skarn Deposit, Northeastern Thailand: Implications for Reduced Gold Skarn Formation and Mineral Exploration. In: Tantiwanit, W., ed., Proceedings of GEOTHAI’07 International Conference on Geology of Thailand, Bangkok, Thailand. 93–95 (in Thai with English Abstract)

Download references

Acknowledgments

This research was supported by Ratchadapisek Somphot Fund of Chulalongkorn University which provided postdoctoral fellowship to the first author. It was also partly supported by a Grant-in-Aid for Scientific Research (B) from Japan Society for the Promotion of Science (JSPS) (No. 18H01300) to Tsunogae. All analytical facilities engaged in this study were provided by the Geology Department, Faculty of Science, Chulalongkorn University, the Graduate School of Life and Environmental Sciences, University of Tsukuba in Japan, and the Department of Geology and Paleontology, National Museum of Nature and Science in Japan. The first author would like to acknowledge especially the Thailand and the Human Resources Development in Science Project (Science Achievement Scholarship of Thailand, SAST) for supporting him during his PhD study and granting him the opportunity to carry out his postdoctoral research. The final publication is available at Springer via https://doi.org/10.1007/s12583-020-1347-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chakkaphan Sutthirat.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanka, A., Kasiban, C., Tsunogae, T. et al. Petrochemistry and Zircon U-Pb Geochronology of Felsic Xenoliths in Late Cenozoic Gem-Related Basalt from Bo Phloi Gem Field, Kanchanaburi, Western Thailand. J. Earth Sci. 32, 1035–1052 (2021). https://doi.org/10.1007/s12583-020-1347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-020-1347-1

Key Words

Navigation