Skip to main content
Log in

Numerical modeling of the spray/spin coating of the interior of metal beverage cans: complete three-dimensional simulation

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In this work we develop a numerical simulation of the spray coating of spinning beverage cans. Though the substrate of the can must be axisymmetric, the coating need not be. We start with an evolution equation, which was derived using scaling arguments and perturbation theory. We then use implicit finite differences and an ADI scheme, with periodic boundary conditions, to efficiently solve the problem numerically. The spray fan is modeled as an expanding ellipse, and we use parameters typical of the coating industry in our simulations. The simulations show that if the can rotates an exact integral number of rotations during the spray process, then the coating layer is almost axisymmetric. But when this cannot be achieved, then three-dimensional effects greatly change the coating dynamics of the thin liquid film and must be included in the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Weidner, DE, Schwartz, LW, Eley, R, "Numerical modeling of the spray coating of spinning bodies." J. Coat. Technol. Res., 16 (2) 363–376 (2018)

    Article  Google Scholar 

  2. Weidner, DE, "Analysis of the flow of a thin liquid film on the surface of a rotating, curved, axisymmetric substrate." Phys. Fluids, 30 (082110) 1–8 (2018)

    Google Scholar 

  3. Conte, SD, Dames, RT, "On an alternating direction method for solving the plate problem with mixed boundary conditions." Appl. Math. Comput., 7 264–273 (1960)

    Google Scholar 

  4. Karawia, A, "A computational algorithm for solving penta-diagonal linear systems." Appl. Math. Comput., 174 (1) 613–618 (2006)

    Google Scholar 

  5. Emslie, AG, Bonner, FT, Peck, LG, "Flow of a viscous liquid on a rotating disk." J. Appl. Phys., 29 (5) 858 (1958)

    Article  CAS  Google Scholar 

  6. Rehg, TG, Higgins, BG, "Spin coating of colloid suspensions." A. I. C. H. E. J., 38 (4) 489–501 (1992)

    Article  CAS  Google Scholar 

  7. Peurrung, LM, Graves, DB, “Spin coating over topography.” Trans. Semicond. Manuf., 6 (1) 72–76 (1993)

    Article  Google Scholar 

  8. Wilson, SK, Hunt, R, and Duffy, BR, "The rate of spreading in spin coating." J. Fluid Mech., 413 65–88 (2000)

    Article  CAS  Google Scholar 

  9. Acrivos, A, Shah, MJ, Petersen, EE, "On the flow of a non-Newtonian liquid on a rotating disk." J. Appl. Phys., 31 963–968 (1984)

    Article  Google Scholar 

  10. Lawrence, CJ, "The mechanics of spin coating of polymer films." Phys. Fluids, 31 (10) 2786–2795 (1988)

    Article  CAS  Google Scholar 

  11. Jenekhe, SA, Schuldt, SB, "Coating flow of non-Newtonian fluids on a flat rotating disk." Ind. Eng. Chem. Fundam., 23 432–436 (1984)

    Article  CAS  Google Scholar 

  12. Schwartz, LW, Roy, RV, "Theoretical and numerical results for spin coating of viscous liquids." Phys. Fluids, 16 (3) 569 (2004)

    Article  CAS  Google Scholar 

  13. Fraysse, M, Homsey, GM, "An experimental study of rivulet instabilities in centrifugal spin coating of Newtonian and non-Newtonian fluids." Phys. Fluids, 6 1491 (1994)

    Article  CAS  Google Scholar 

  14. Stillwagon, LE, Larson, RG, "Leveling of thin films over uneven substrates during spin coating." Phys. Fluids A Fluid Dyn., 2 (11) 1937 (1990)

    Article  CAS  Google Scholar 

  15. Hwang, JH, Ma, F, "On the flow of a thin liquid film over a rough rotating disk." J. Appl. Phys., 66 388 (1989)

    Article  Google Scholar 

  16. Spaid, MA, Homsy, GM, "Viscoelastic free-surface flows - spin-coating and dynamic contact lines." J. Nonnewton. Fluid Mech., 55 249–281 (1994)

    Article  CAS  Google Scholar 

  17. Mahmoodi, S, Guoqing, M, Khajavi, MN, "Two-dimensional spin coating with vertical centrifugal force and the effect of artificial gravity on surface leveling." J. Coat. Technol. Res., 13 (6) 1123–1137 (2016)

    Article  CAS  Google Scholar 

  18. Sahoo, S, Doshia, P, Orped, V, "Spreading dynamics of superposed liquid drops on a spinning disk." Phys. Fluids, 30 (1) 012110 (2018)

    Article  Google Scholar 

  19. Sukanek, PC, "A model for spin coating with topography." J. Electrochem. Soc., 136 (10) 3019–3026 (1989)

    Article  Google Scholar 

  20. Katranidis, V, Kamnis, S, Gu, S, "Prediction of coating properties of thermally sprayed WC-Co on complex geometries." J. Therm. Spray Technol., 27 (6) 1035–1037 (2018)

    Article  Google Scholar 

  21. Tzinava, M, Delibasis, K, Allcock, B, Kamnis, S, "A general-purpose spray coating deposition software simulator." Surf. Coat. Technol., 399 126148 (2020)

    Article  CAS  Google Scholar 

  22. Schwartz, LW, Weidner, DE, "Modeling of coating flows on curved surfaces." J. Eng. Math., 29 (1) 91–103 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Weidner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was presented at the 2020 International Society of Coatings Science and Technology Conference that was held virtually September 20–23, 2020.

Appendix A: numerical scheme

Appendix A: numerical scheme

The functions \(\tilde{\mathrm{A}}\), \(\tilde{\mathrm{B}}\), \(\tilde{\mathrm{C}}\), \(\tilde{\mathrm{D}}\), and \(\tilde{\mathrm{E}}\) shall be defined explicitly in what follows. First we introduce the operators

$$\begin{aligned} \left( \varLambda ^k_{i+1/2,j}\right) _{30}= & {} \frac{\left[ \hat{h}^k_{i+2,j}-3\hat{h}^k_{i+1,j} +3\hat{h}^k_{i,j}-\hat{h}^k_{i-1,j}\right] }{(\varDelta \hat{s})^3}\\ \left( \varLambda ^k_{i+1/2,j}\right) _{20}= & {} \frac{\left[ \hat{h}^k_{i+2,j}- \hat{h}^k_{i+1,j} -\hat{h}^k_{i,j}+\hat{h}^k_{i-1,j}\right] }{(2\varDelta \hat{s})^2}\\ \left( \varLambda ^k_{i+1/2,j}\right) _{10}= & {} \frac{\left[ \hat{h}^k_{i+1,j} -\hat{h}^k_{i,j}\right] }{(\varDelta \hat{s})}\\ \left( \varLambda ^k_{i,j+1/2}\right) _{03}= & {} \frac{\left[ \hat{h}^k_{i,j+2}-3\hat{h}^k_{i,j+1} +3\hat{h}^k_{i,j}-\hat{h}^k_{i,j-1}\right] }{(\varDelta \phi )^3}\\ \left( \varLambda ^k_{i,j+1/2}\right) _{02}= & {} \frac{\left[ \hat{h}^k_{i,j+2}- \hat{h}^k_{i,j+1} -\hat{h}^k_{i,j}+\hat{h}^k_{i,j-1}\right] }{2(\varDelta \phi )^2}\\ \left( \varLambda ^k_{i,j+1/2}\right) _{01}= & {} \frac{\left[ \hat{h}^k_{i,j+1} -\hat{h}^k_{i,j}\right] }{(\varDelta \phi )}\\ \left( \varLambda ^k_{i+1/2,j+1/2}\right) _{11}= & {} \frac{\left[ \hat{h}^k_{i+1,j} -\hat{h}^k_{i,j}\right] }{(\varDelta \hat{s}\varDelta \phi )} -\frac{\left[ \hat{h}^k_{i,j+1} -\hat{h}^k_{i,j}\right] }{(\varDelta \hat{s}\varDelta \phi )}\\ \left( \varLambda ^k_{i+1/2,j+1/2}\right) _{21}= & {} \frac{\left[ \hat{h}^k_{i+2,j+1}- \hat{h}^k_{i+1,j+1} -\hat{h}^k_{i,j+1}+\hat{h}^k_{i-1,j+1}\right] }{2(\varDelta \hat{s})^2\varDelta \phi } -\frac{\left[ \hat{h}^k_{i+2,j}- \hat{h}^k_{i+1,j} -\hat{h}^k_{i,j}+\hat{h}^k_{i-1,j}\right] }{2(\varDelta \hat{s})^2\varDelta \phi }\\ \left( \varLambda ^k_{i+1/2,j+1/2}\right) _{12}= & {} \frac{\left[ \hat{h}^k_{i,j+2}- \hat{h}^k_{i,j+1} -\hat{h}^k_{i,j}+\hat{h}^k_{i,j-1}\right] }{2(\varDelta \phi )^2\varDelta s}\\&\quad -\frac{\left[ \hat{h}^k_{i+2,j}- \hat{h}^k_{i+1,j} -\hat{h}^k_{i,j}+\hat{h}^k_{i,j-1}\right] }{2(\varDelta \phi )^2\varDelta s} \end{aligned}$$

and the definitions

$$\begin{aligned} \hat{r}_{i+1/2}= & {} \frac{\hat{r}_{i+1}+\hat{r}_i}{2}\\ \left( \hat{r}'\right) _{i+1/2}= & {} \frac{\hat{r}_{i+1}-\hat{r}_i}{\varDelta h_{r}}\\ \left( \hat{r}''\right) _{i+1/2}= & {} \frac{\hat{r}_{i+2}-\hat{r}_{i+1}+\hat{r}_i-\hat{r}_{i-1}}{2(\varDelta \hat{r})^2}\\ (\varDelta \hat{r})_{i+1/2}= & {} (\hat{r}_{i+1}-\hat{r}_{i}), \end{aligned}$$

where the subscript \(i+1/2\) means that the quantity is evaluated between the nodes i and \(i+1\). Using these operators we make the following definitions:

$$\begin{aligned}&\tilde{\mathrm{A}}^k_{i,j} =-\left[ \lambda _2\sin \theta _i+\varGamma _2\hat{r}_i\cos \theta _i \right] \\&\tilde{\mathrm{B}}^{k+1/2}_{i,j} = -\left( \varLambda ^{k+1/2}_{i+1/2,j}\right) _{30} -\left( \varLambda ^{k+1/2}_{i+1/2,j}\right) _{20}\\&\quad \left( \frac{\left( \hat{r}'\right) _{i+1/2}}{\hat{r}_{i+1/2}}\right) .\\ -\left( \varLambda ^{k+1/2}_{i+1/2,j}\right) _{10} \left( \frac{\left( \hat{r}''\right) _{i+1/2}}{\hat{r}_{i+1/2}}\right) \\&\quad +\left( \frac{\left( \hat{r}'\right) _{i+1/2}}{(\hat{r}_{i+1/2})^2}\right) \\&\tilde{\mathrm{C}}^k_{i,j} = -\left( \varLambda ^k_{i,j+1/2}\right) _{01} \frac{\lambda _2\cos (\theta _i)}{\hat{r}_{i}}\\&\quad -\left( \varLambda ^k_{i,j+1/2}\right) _{01} \varGamma _2\sin \theta _i\\&\quad -\left( \varLambda ^k_{i,j+1/2}\right) _{11} \left[ \frac{(r')_i}{(\hat{r}_i)^2}\right] \\&\quad -\frac{\left( \varLambda ^k_{i,j}\right) _{21}}{\hat{r}_{i}}\\&\quad -\frac{\left( \varLambda ^k_{i,j}\right) _{03}}{(\hat{r}_{i})^3}\\&\tilde{\mathrm{D}}^{k+1}_{i,j} = -\left( \varLambda ^{k+1}_{i,j+1/2}\right) _{01} \frac{\lambda _2\cos (\theta _i)}{\hat{r}_{i}}\\&\quad -\left( \varLambda ^{k+1}_{i,j+1/2}\right) _{01} \varGamma _2\sin \theta _i\\&\quad -\left( \varLambda ^{k+1}_{i,j+1/2}\right) _{11} \left[ \frac{(r')_i}{(r_i)^2}\right] \\&\quad -\frac{\left( \varLambda ^{k+1}_{i,j}\right) _{21}}{\hat{r}_{i}}\\&\quad -\frac{\left( \varLambda ^{k+1}_{i,j}\right) _{03}}{(\hat{r}_{i})^3}\\&\tilde{\mathrm{E}}^{k}_{i,j} = -\left( \varLambda ^{k}_{i,j+1/2}\right) _{01} \frac{\lambda _2\cos (\theta _i)}{\hat{r}_{i}}\\&\quad -\left( \varLambda ^{k}_{i,j+1/2}\right) _{01} \varGamma _2\sin \theta _i\\&\quad -\left( \varLambda ^{k}_{i,j+1/2}\right) _{11} \left[ \frac{(r')_i}{(r_i)^2}\right] \\&\quad -\frac{\left( \varLambda ^{k}_{i,j}\right) _{21}}{\hat{r}_{i}}\\&\quad -\frac{\left( \varLambda ^{k}_{i,j}\right) _{03}}{(\hat{r}_{i})^3}.\\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weidner, D.E. Numerical modeling of the spray/spin coating of the interior of metal beverage cans: complete three-dimensional simulation. J Coat Technol Res 19, 97–109 (2022). https://doi.org/10.1007/s11998-021-00517-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00517-6

Keywords

Navigation