Skip to main content
Log in

Anticancer Activities of Biogenic Silver Nanoparticles Targeting Apoptosis and Inflammatory Pathways in Colon Cancer Cells

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Colorectal cancer (CRC) progression is a complex process, with an interplay of multiple molecular signaling pathways. Cyclooxygenase-2 (COX-2) and NF-κB are important hallmark proteins responsible for the transition from inflammation to colon cancer. Due to the adverse effects of chemotherapeutic drugs, there is an imperative need to develop new drugs, and recently, nanoparticles found to be promising strategy in tumor detection, prevention and treatment of cancer. Biosynthesis of silver nanoparticles (AgNPs) was achieved with the help of Eucalyptus globulus L. leaf extract. Using a typical XRD pattern, NanoSight and TEM technique, the size and shape of the biogenic AgNPs were determined as ~ 20 nm and spherical. The cytotoxicity study exhibited a dose-dependent effect against HCT116 cells, with an inhibitory concentration (IC50) of 1.152 µg/ml. In addition, AgNPs effectively inhibited the proliferation, colony formation, with increased ROS production compared to untreated cells. Further, mechanistic analysis revealed that AgNPs arrested the cell cycle, downregulated the expression of antiapoptotic, inflammatory, stem cell markers, and upregulated the apoptotic genes in HCT116 cells. In conclusion, for the first time, we report the green synthesis of AgNPs using E. globulus leaf extract that has potential anticancer activity with dual inhibitory action on COX-2 and NF-κB expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article.

References

  1. J. Ferlay, M. Colombet, I. Soerjomataram, C. Mathers, D. M. Parkin, M. Piñeros, A. Znaor, and F. Bray (2019). Int J Cancer 144, 1941.

    Article  CAS  PubMed  Google Scholar 

  2. Y. Sasaki, D. Kamei, Y. Ishikawa, T. Ishii, S. Uematsu, S. Akira, M. Murakami, and S. Hara (2012). Oncogene 31, 2943.

    Article  CAS  PubMed  Google Scholar 

  3. M. M. Taketo (1998). J Natl Cancer Inst 90, 1609.

    Article  CAS  PubMed  Google Scholar 

  4. D. Wang and R. N. Dubois (2010). Oncogene 29, 781.

    Article  CAS  PubMed  Google Scholar 

  5. D. A. Dixon (2003). Prog Exp Tumor Res 37, 52.

    Article  CAS  PubMed  Google Scholar 

  6. T. J. Maier, K. Schilling, R. Schmidt, G. Geisslinger, and S. Grosch (2004). Biochem Pharmacol 67, 1469.

    Article  CAS  PubMed  Google Scholar 

  7. M. Karin, Y. Cao, F. R. Greten, and Z. W. Li (2002). Nat Rev Cancer 2, 301.

    Article  CAS  PubMed  Google Scholar 

  8. H. Clevers (2004). Cell 118, 671.

    Article  CAS  PubMed  Google Scholar 

  9. D. S. Lind, S. N. Hochwald, J. Malaty, S. Rekkas, P. Hebig, G. Mishra, L. L. Moldawer, E. M. Copeland 3rd., and S. Mackay (2001). Surgery 130, 363.

    Article  CAS  PubMed  Google Scholar 

  10. H. G. Yu, L. L. Yu, Y. Yang, H. S. Luo, J. P. Yu, J. J. Meier, H. Schrader, A. Bastian, W. E. Schmidt, and F. Schmitz (2003). Oncology 65, 37.

    Article  CAS  PubMed  Google Scholar 

  11. M. Abdullah, A. A. Rani, A. W. Sudoyo, D. Makmun, D. R. Handjari, and B. S. Hernowo (2013). Acta Med Indones 45, 187.

    PubMed  Google Scholar 

  12. M. D. Haag, M. J. Bos, A. Hofman, P. J. Koudstaal, M. M. Breteler, and B. H. Stricker (2008). Arch Intern Med 168, 1219.

    Article  PubMed  Google Scholar 

  13. E. Z. Dajani and K. Islam (2008). J Physiol Pharmacol 59 (Suppl 2), 117.

    PubMed  Google Scholar 

  14. M. Rai, A. Yadav, and A. Gade (2009). Biotechnol Adv 27, 76.

    Article  CAS  PubMed  Google Scholar 

  15. S. M. Mousavi, S. A. Hashemi, Y. Ghasemi, A. Atapour, A. M. Amani, A. Savar Dashtaki, A. Babapoor, and O. Arjmand (2018). Artif Cells Nanomed Biotechnol 46, S855.

    Article  CAS  PubMed  Google Scholar 

  16. S. P. Deshmukh, S. M. Patil, S. B. Mullani, and S. D. Delekar (2019). Mater Sci Eng C Mater Biol Appl 97, 954.

    Article  CAS  PubMed  Google Scholar 

  17. G. Das, J. K. Patra, T. Debnath, A. Ansari, and H.-S. Shin (2019). PLOS ONE 14, e0220950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O’Regan (2006). Lancet Oncol 7, 657.

    Article  CAS  PubMed  Google Scholar 

  19. K. Vasanth, K. Ilango, R. MohanKumar, A. Agrawal, and G. P. Dubey (2014). Colloids Surf B Biointerfaces 117, 354.

    Article  CAS  PubMed  Google Scholar 

  20. Rz. M. Gengan, K. Anand, A. Phulukdaree, and A. Chuturgoon (2013). Colloids Surf B Biointerfaces 105, 87.

    Article  CAS  PubMed  Google Scholar 

  21. R. Remya, S. R. Rajasree, L. Aranganathan, and T. Suman (2015). Biotechnol Rep 8, 110.

    Article  CAS  Google Scholar 

  22. I. M. Chung, I. Park, K. Seung-Hyun, M. Thiruvengadam, and G. Rajakumar (2016). Nanoscale Res Lett 11, 40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. A. Lateef, S. A. Ojo, and J. A. Elegbede (2016). Nanotechnol Rev 5, 601.

    CAS  Google Scholar 

  24. I. A. Adelere and A. Lateef (2016). Nanotechnol Rev 5, 567.

    Article  CAS  Google Scholar 

  25. Y. He, Z. Du, H. Lv, Q. Jia, Z. Tang, X. Zheng, K. Zhang, and F. Zhao (2013). Int J Nanomed 8, 1809.

    Article  CAS  Google Scholar 

  26. A. N. M. Ali, S. M. Kareem, and A. Ghasemian (2020). J Gastrointest Cancer 51, 560.

    Article  CAS  PubMed  Google Scholar 

  27. A. Nakhaee, M. Bokaeian, M. Saravani, A. Farhangi, and A. Akbarzadeh (2009). Indian J Clin Biochem 24, 419.

    Article  PubMed  PubMed Central  Google Scholar 

  28. B. C. Zhu, G. Henderson, F. Chen, H. Fei, and R. A. Laine (2001). J Chem Ecol 27, 1617.

    Article  CAS  PubMed  Google Scholar 

  29. L. Mirossay, L. Varinská, and J. Mojžiš (2017). Int J Mol Sci 19, 27.

    Article  PubMed Central  CAS  Google Scholar 

  30. S. J. Jeong, W. Koh, E. O. Lee, H. J. Lee, H. Bae, J. Lü, and S. H. Kim (2011). Phytother Res 25, 1.

    Article  CAS  PubMed  Google Scholar 

  31. M. Rafique, I. Sadaf, M. S. Rafique, and M. B. Tahir (2017). Artif Cells Nanomed Biotechnol 45, 1272.

    Article  CAS  PubMed  Google Scholar 

  32. M. Khan, S. F. Adil, M. N. Tahir, W. Tremel, H. Z. Alkhathlan, A. Al-Warthan, and M. R. Siddiqui (2013). Int J Nanomed 8, 1507.

    Google Scholar 

  33. P. Kumar, A. Nagarajan, and P. D. Uchil (2018). Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot095489.

    Article  PubMed  Google Scholar 

  34. F. Raeisi, E. Raeisi, E. Heidarian, D. Shahbazi-Gahroui, and Y. Lemoigne (2019). J Med Signals Sens 9, 267.

    Article  PubMed  PubMed Central  Google Scholar 

  35. T. Ishiwata, F. Hasegawa, M. Michishita, N. Sasaki, N. Ishikawa, K. Takubo, Y. Matsuda, T. Arai, and J. Aida (2018). Oncol Lett 15, 2485.

    PubMed  Google Scholar 

  36. D. Figueroa, M. Asaduzzaman, and F. Young (2018). J Pharmacol Toxicol Methods 94, 26.

    Article  CAS  PubMed  Google Scholar 

  37. L. C. Crowley, G. Chojnowski, and N. J. Waterhouse (2016). Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot087163.

    Article  PubMed  Google Scholar 

  38. B. Kim (2017). Methods Mol Biol 1606, 133.

    Article  CAS  PubMed  Google Scholar 

  39. K. Ali, B. Ahmed, S. Dwivedi, Q. Saquib, A. A. Al-Khedhairy, and J. Musarrat (2015). PLoS One 10, e0131178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. P. Salgado, D. O. Mártire, and G. Vidal (2019). Mater Res Exp 6, 82006.

    Article  CAS  Google Scholar 

  41. M. Riaz, M. Altaf, A. Faisal, M. A. Shekheli, G. A. Miana, M. Q. Khan, M. A. Shah, S. Z. Ilyas, and A. A. Khan (2018). J Nanosci Nanotechnol 18, 8392.

    Article  CAS  PubMed  Google Scholar 

  42. S. B. Aziz, G. Hussein, M. A. Brza, S. J. Mohammed, R. T. Abdulwahid, S. R. Saeed, and A. Hassanzadeh (2019). Nanomaterials (Basel) 9.

  43. S. Pirtarighat, M. Ghannadnia, and S. Baghshahi (2019). Mater Sci Eng C Mater Biol Appl 98, 250.

    Article  CAS  PubMed  Google Scholar 

  44. A. R. Allafchian, S. A. H. Jalali, F. Aghaei, and H. R. Farhang (2018). IET Nanobiotechnol 12, 574.

    Article  PubMed  PubMed Central  Google Scholar 

  45. P. Kuppusamy, S. J. Ichwan, P. N. Al-Zikri, W. H. Suriyah, I. Soundharrajan, N. Govindan, G. P. Maniam, and M. M. Yusoff (2016). Biol Trace Elem Res 173, 297.

    Article  CAS  PubMed  Google Scholar 

  46. S. K. Verma, E. Jha, P. K. Panda, A. Mishra, A. Thirumurugan, B. Das, S. K. S. Parashar, and M. Suar (2018). Toxicol Sci 161, 125.

    Article  CAS  PubMed  Google Scholar 

  47. S. Deepika, C. I. Selvaraj, and S. M. Roopan (2020). Mater Sci Eng C Mater Biol Appl 106, 110279.

    Article  CAS  PubMed  Google Scholar 

  48. H. Xiao, Y. Chen, and M. Alnaggar (2019). Micron 126, 102750.

    Article  CAS  PubMed  Google Scholar 

  49. S. Gurunathan, M. Qasim, C. Park, H. Yoo, J. H. Kim, and K. Hong (2018). Int J Mol Sci 19, 2269.

    Article  PubMed Central  CAS  Google Scholar 

  50. C. W. Lee, M. J. Chen, J. Y. Cheng, and P. K. Wei (2009). J Biomed Opt 14, 34016.

    CAS  Google Scholar 

  51. L. de la Garza, Z. V. Saponjic, N. M. Dimitrijevic, M. C. Thurnauer, and T. Rajh (2006). J Phys Chem B 110, 1.

    Google Scholar 

  52. T. Sree Latha, M. C. Reddy, S. V. Muthukonda, V. Srikanth, and D. Lomada (2017). Mater Sci Eng C Mater Biol Appl 78, 969.

    Article  CAS  PubMed  Google Scholar 

  53. S. R. Satapathy, P. Mohapatra, D. Das, S. Siddharth, and C. N. Kundu (2015). Pathol Oncol Res 21, 405.

    Article  CAS  PubMed  Google Scholar 

  54. S. R. Satapathy, P. Mohapatra, R. Preet, D. Das, B. Sarkar, T. Choudhuri, M. D. Wyatt, and C. N. Kundu (2013). Nanomedicine (Lond) 8, 1307.

    Article  CAS  Google Scholar 

  55. S. Holdenrieder and P. Stieber (2004). Clin Biochem 37, 605.

    Article  CAS  PubMed  Google Scholar 

  56. T. Komiya, Y. Hosono, T. Hirashima, N. Masuda, T. Yasumitsu, K. Nakagawa, M. Kikui, A. Ohno, M. Fukuoka, and I. Kawase (1997). Clin Cancer Res 3, 1831.

    CAS  PubMed  Google Scholar 

  57. A. V. Biankin, J. G. Kench, A. L. Morey, C. S. Lee, S. A. Biankin, D. R. Head, T. B. Hugh, S. M. Henshall, and R. L. Sutherland (2001). Cancer Res 61, 8830.

    CAS  PubMed  Google Scholar 

  58. Y. Q. Bai, S. Miyake, T. Iwai, and Y. Yuasa (2003). Oncogene 22, 7942.

    Article  PubMed  CAS  Google Scholar 

  59. A. N. Hata, J. A. Engelman, and A. C. Faber (2015). Cancer Discov 5, 475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. P. E. Czabotar, G. Lessene, A. Strasser, and J. M. Adams (2014). Nat Rev Mol Cell Biol 15, 49.

    Article  CAS  PubMed  Google Scholar 

  61. T. Dziaman, H. Ludwiczak, J. M. Ciesla, Z. Banaszkiewicz, A. Winczura, M. Chmielarczyk, E. Wisniewska, A. Marszalek, B. Tudek, and R. Olinski (2014). PLOS ONE 9, 115558.

    Article  CAS  Google Scholar 

  62. I. Bièche, G. de Murcia, and R. Lidereau (1996). Clin Cancer Res 2, 1163.

    PubMed  Google Scholar 

  63. K. Nosho, H. Yamamoto, M. Mikami, H. Taniguchi, T. Takahashi, Y. Adachi, A. Imamura, K. Imai, and Y. Shinomura (2006). Eur J Cancer 42, 2374.

    Article  CAS  PubMed  Google Scholar 

  64. R. Jäger and R. M. Zwacka (2010). Cancers (Basel) 2, 1952.

    Article  CAS  Google Scholar 

  65. A. Philchenkov, M. Zavelevich, T. J. Kroczak, and M. Los (2004). Exp Oncol 26, 82.

    CAS  PubMed  Google Scholar 

  66. M. Asadi, D. Shanehbandi, T. Asvadi Kermani, Z. Sanaat, V. Zafari, and S. Hashemzadeh (2018). Asian Pac J Cancer Prev 19, 1277.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. N. N. Danial and S. J. Korsmeyer (2004). Cell 116, 205.

    Article  CAS  PubMed  Google Scholar 

  68. V. R. Katkoori, C. Suarez-Cuervo, C. Shanmugam, N. C. Jhala, T. Callens, L. Messiaen, J. Posey 3rd., H. L. Bumpers, S. Meleth, W. E. Grizzle, and U. Manne (2010). J Gastrointest Oncol 1, 76.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. A. Pryczynicz, M. Gryko, K. Niewiarowska, D. Cepowicz, M. Ustymowicz, A. Kemona, and K. Guzińska-Ustymowicz (2014). World J Gastroenterol 20, 1305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. R. Fux, M. Schwab, K. P. Thon, C. H. Gleiter, and P. Fritz (2005). Clin Cancer Res 11, 4754.

    Article  CAS  PubMed  Google Scholar 

  71. C. E. Eberhart, R. J. Coffey, A. Radhika, F. M. Giardiello, S. Ferrenbach, and R. N. DuBois (1994). Gastroenterology 107, 1183.

    Article  CAS  PubMed  Google Scholar 

  72. B. Hoesel and J. A. Schmid (2013). Mol Cancer 12, 86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. N. Moorchung, S. Kunwar, and K. W. Ahmed (2014). J Cancer Res Ther 10, 631.

    PubMed  Google Scholar 

  74. Y. Xia, S. Shen, and I. M. Verma (2014). Cancer Immunol Res 2, 823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. R. Pang, W. L. Law, A. C. Chu, J. T. Poon, C. S. Lam, A. K. Chow, L. Ng, L. W. Cheung, X. R. Lan, H. Y. Lan, V. P. Tan, T. C. Yau, R. T. Poon, and B. C. Wong (2010). Cell Stem Cell 6, 603.

    Article  CAS  PubMed  Google Scholar 

  76. Z. Kozovska, V. Gabrisova, and L. Kucerova (2014). Biomed Pharmacother 68, 911.

    Article  CAS  PubMed  Google Scholar 

  77. S. Saigusa, K. Tanaka, Y. Toiyama, K. Matsushita, M. Kawamura, Y. Okugawa, J. Hiro, Y. Inoue, K. Uchida, Y. Mohri, and M. Kusunoki (2012). Oncol Rep 28, 855.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Declared none.

Funding

This work was partly supported by the Science and Engineering Research Board (SERB) (EMR/2017/000973), Department of Science & Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Ramireddy Narala.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narasimha, V.R., Latha, T.S., Pallu, R. et al. Anticancer Activities of Biogenic Silver Nanoparticles Targeting Apoptosis and Inflammatory Pathways in Colon Cancer Cells. J Clust Sci 33, 2215–2231 (2022). https://doi.org/10.1007/s10876-021-02143-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02143-z

Keywords

Navigation