Skip to main content

Advertisement

Log in

Derived from Diaryl-λ3-Iodane-Containing Polyoxometalate: Iodine-Doped Molybdenum Carbide for Efficient Electrocatalytic Hydrogen Evolution

  • Brief Communication
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

A Correction to this article was published on 19 September 2021

This article has been updated

Abstract

Among the schemes to improve the efficiency of electrochemical hydrogen evolution reaction (HER), molybdenum carbides are seen as suitable candidates to replace noble metal electrocatalysts because of their Pt-like d-band center and proper adsorption of intermediate hydrogen species (Hads). Iodine is identified to form I−Hads bond when used as a single-atom electrocatalyst of HER, thereby improving the performance. However, there is no report of combining iodine atoms with molybdenum carbides. We successfully designed a polyoxomolybdate-based precursor molecule which included octamolybdate anions and iodonium cations. After pyrolysis treatment, iodine-doped molybdenum carbide nanocomposite was obtained and exhibited enhanced HER property. This work can verify that iodine atoms can synergistically improve the electrochemical performance of transitional metal nanocomposites, and provide a new insight for the design of advanced HER electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Change history

References

  1. J. Zhu, L. S. Hu, P. X. Zhao, L. Y. S. Lee, and K. Y. Wong (2020). Chem. Rev. 120 (2), 851–918. https://doi.org/10.1021/acs.chemrev.9b00248.

    Article  CAS  PubMed  Google Scholar 

  2. Y. J. Li, Y. J. Sun, Y. N. Qin, W. Y. Zhang, L. Wang, M. C. Luo, H. Yang, and S. J. Guo (2020). Adv. Energy Mater. 10 (11), 1903120. https://doi.org/10.1002/aenm.201903120.

    Article  CAS  Google Scholar 

  3. J. Wang, T. Liao, Z. Z. Wei, J. T. Sun, J. J. Guo, and Z. Q. Sun (2021). Small Methods 5 (4), 2000988. https://doi.org/10.1002/smtd.202000988.

    Article  CAS  Google Scholar 

  4. H. M. Sun, Z. H. Yan, F. M. Liu, W. C. Xu, F. Y. Cheng, and J. Chen (2020). Adv. Mater. 32 (3), 1806326. https://doi.org/10.1002/adma.201806326.

    Article  CAS  Google Scholar 

  5. Y. C. Huang, J. Hu, H. X. Xu, W. Bian, J. X. Ge, D. J. Zang, D. J. Cheng, Y. K. Lv, C. Zhang, J. Gu, and Y. G. Wei (2018). Adv. Energy Mater. 8 (24), 1800789. https://doi.org/10.1002/aenm.201800789.

    Article  CAS  Google Scholar 

  6. L. Liao, S. N. Wang, J. J. Xiao, X. J. Bian, Y. H. Zhang, et al. (2014). Energ. Environ. Sci. 7 (1), 387–392. https://doi.org/10.1039/C3EE42441C.

    Article  CAS  Google Scholar 

  7. Z. P. Shi, K. Q. Nie, Z. J. Shao, B. X. Gao, H. L. Lin, H. B. Zhang, B. L. Liu, Y. X. Wang, Y. H. Zhang, X. H. Sun, X. M. Cao, P. Hu, Q. X. Gao, and Y. Tang (2017). Adv. Energy Mater. 10 (5), 1262–1271. https://doi.org/10.1039/C7EE00388A.

    Article  CAS  Google Scholar 

  8. Y. C. Huang, Y. H. Sun, X. L. Zheng, T. Aoki, B. Pattengale, J. E. Huang, X. He, W. Bian, S. Younan, N. Williams, J. Hu, J. X. Ge, N. Pu, X. X. Yan, X. Q. Pan, L. J. Zhang, Y. G. Wei, and J. Gu (2019). Nat. Commun. 10 (1), 982. https://doi.org/10.1038/s41467-019-08877-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. B. Gao, X. Y. Du, Y. M. Ma, Y. X. Li, Y. H. Li, S. J. Ding, Z. X. Song, and C. H. Xiao (2020). Appl. Catal. B Environ. 263, 117750. https://doi.org/10.1016/j.apcatb.2019.117750.

    Article  CAS  Google Scholar 

  10. X. Wang, Y. W. Zhang, H. N. Si, Q. H. Zhang, J. Wu, L. Gao, X. F. Wei, Y. Sun, Q. L. Liao, Z. Zhang, K. Ammarah, L. Gu, Z. Kang, and Y. Zhang (2020). J. Am. Chem. Soc. 142 (9), 4298–4308. https://doi.org/10.1021/jacs.9b12113.

    Article  CAS  PubMed  Google Scholar 

  11. H. Q. Song, Y. H. Li, L. Shang, Z. Y. Tang, T. R. Zhang, and S. Y. Lu (2020). Nano Energy 72, 104730. https://doi.org/10.1016/j.nanoen.2020.104730.

    Article  CAS  Google Scholar 

  12. Y. Gu, A. P. Wu, Y. Q. Jiao, H. R. Zheng, X. Q. Wang, Y. Xie, L. Wang, C. G. Tian, and H. G. Fu (2021). Angew. Chem. Int. Ed. 60 (12), 6673–6681. https://doi.org/10.1002/anie.202016102.

    Article  CAS  Google Scholar 

  13. L. S. Wu, M. T. Zhang, Z. H. Wen, and S. Q. Ci (2020). Chem. Eng. J. 399, 125728. https://doi.org/10.1016/j.cej.2020.125728.

    Article  CAS  Google Scholar 

  14. Y. Q. Zhao, T. Ling, S. M. Chen, B. Jin, A. Vasileff, Y. Jiao, L. Song, J. Luo, and S. Z. Qiao (2019). Angew. Chem. Int. Ed. 58 (35), 12252–12257. https://doi.org/10.1002/anie.201905554.

    Article  CAS  Google Scholar 

  15. K. Chu, F. Wang, X. L. Zhao, X. P. Wei, X. W. Wang, and Y. Tian (2017). Electrochim. Acta 246, 1155–1162. https://doi.org/10.1016/j.electacta.2017.07.001.

    Article  CAS  Google Scholar 

  16. Y. F. Zhan, B. D. Zhang, L. M. Cao, X. X. Wu, Z. P. Lin, X. Yu, X. X. Zhang, D. R. Zeng, F. Y. Xie, W. H. Zhang, J. Chen, and H. Meng (2015). Carbon 94, 1–8. https://doi.org/10.1016/j.carbon.2015.06.039.

    Article  CAS  Google Scholar 

  17. I. Y. Jeon, H. J. Choi, M. Choi, J. M. Seo, S. M. Jung, M. J. Kim, S. Zhang, L. Zhang, Z. Xia, L. Dai, N. Park, and J. B. Baek (2013). Sci. Rep. 3, 1810. https://doi.org/10.1038/srep01810.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Z. Yao, H. Nie, Z. Yang, X. Zhou, Z. Liu, and S. Huang (2012). Chem. Commun. 48 (7), 1027–1029. https://doi.org/10.1039/c2cc16192c.

    Article  CAS  Google Scholar 

  19. J. X. Liu, X. B. Zhang, Y. L. Li, S. L. Huang, and G. Y. Yang (2020). Coord. Chem. Rev. 414, 213210. https://doi.org/10.1016/j.ccr.2020.213260.

    Article  CAS  Google Scholar 

  20. X. L. Wang, Y. Tian, Z. H. Chang, and H. Y. Lin (2020). ACS Sustain. Chem. Eng. 8, 15696–15702. https://doi.org/10.1021/acssuschemeng.0c05459.

    Article  CAS  Google Scholar 

  21. S. W. Zhang, F. X. Ou, S. G. Ning, and P. Cheng (2021). Inorg. Chem. Front. 8 (7), 1865–1899. https://doi.org/10.1039/d0qi01407a.

    Article  CAS  Google Scholar 

  22. S. Y. Lai, K. H. Ng, C. K. Cheng, H. Nur, M. Nurhadi, and M. Arumugam (2021). Chemosphere 263, 128244. https://doi.org/10.1016/j.chemosphere.2020.128244.

    Article  CAS  PubMed  Google Scholar 

  23. Z. Wang, H. T. Sun, M. Kurmoo, Q. Y. Liu, G. L. Zhuang, Q. Q. Zhao, X. P. Wang, C. H. Tung, and D. Sun (2019). Chem. Sci. 10 (18), 4862–4867. https://doi.org/10.1039/c8sc05666h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. R. Chilivery, G. Begum, V. Chaitanya, and R. K. Rana (2020). Angew. Chem. Int. Ed. 59 (21), 8160–8165. https://doi.org/10.1002/anie.201913492.

    Article  CAS  Google Scholar 

  25. Z. Huang, Z. X. Yang, M. Z. Hussain, B. L. Chen, Q. L. Jia, Y. Q. Zhu, and Y. D. Xia (2020). Electrochim. Acta 330, 135335. https://doi.org/10.1016/j.electacta.2019.135335.

    Article  CAS  Google Scholar 

  26. B. Huang, D. H. Yang, and B. H. Han (2020). J. Mater. Chem. A 8 (9), 4593–4628. https://doi.org/10.1039/c9ta12679a.

    Article  CAS  Google Scholar 

  27. J. X. Ge, J. Hu, Y. T. Zhu, O. N. Zeb, D. J. Zang, Z. X. Qin, Y. C. Huang, J. W. Zhang, and Y. G. Wei (2020). Acta Phys. Chim. Sin. 36 (1), 1906063. https://doi.org/10.3866/pku.Whxb201906063.

    Article  Google Scholar 

  28. B. Huang, Y. Ma, Z. Xiong, Z. Xiao, P. Wu, P. Jiang, and M. Liang (2021). Environ Mater. https://doi.org/10.1002/eem2.12150.

    Article  Google Scholar 

  29. A. Misra, K. Kozma, C. Streb, and M. Nyman (2020). Angew. Chem. Int. Ed. 59 (2), 596–612. https://doi.org/10.1002/anie.201905600.

    Article  CAS  Google Scholar 

  30. Z. L. Xiong, F. Wang, D. G. Ke, Y. Wang, B. Huang, Z. C. Xiao, and P. F. Wu (2020). Chemistryselect 5 (23), 7056–7059. https://doi.org/10.1002/slct.202001599.

    Article  CAS  Google Scholar 

  31. Y. C. Huang, J. X. Ge, J. Hu, J. W. Zhang, J. Hao, and Y. G. Wei (2018). Adv. Energy Mater. 8 (6), 1701601. https://doi.org/10.1002/aenm.201701601.

    Article  CAS  Google Scholar 

  32. F. Yu, Y. Gao, Z. Lang, Y. Ma, L. Yin, J. Du, H. Tan, Y. Wang, and Y. Li (2018). Nanoscale 10 (13), 6080–6087. https://doi.org/10.1039/c8nr00908b.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos. 21271068, 21401050), National College Students' Innovation and Entrepreneurship Training Program (No. S202010500097).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zicheng Xiao or Pingfan Wu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4209 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhao, Y., Huang, B. et al. Derived from Diaryl-λ3-Iodane-Containing Polyoxometalate: Iodine-Doped Molybdenum Carbide for Efficient Electrocatalytic Hydrogen Evolution. J Clust Sci 33, 2375–2381 (2022). https://doi.org/10.1007/s10876-021-02155-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02155-9

Keywords

Navigation