Skip to main content
Log in

Adsorption of heavy metal ions via apple waste low-cost adsorbent: Characterization and performance

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This research focuses on the enhancement of the biosorption process via apple waste (a cheap adsorbent) for the treatment of heavy metals (including Cu2+, Cd2+, Zn2+ and Pb2+). The apple pomace modified by potassium permanganate (ACAPMP), apple pomace modified by sodium hydroxide (APMSH) and activated carbon apple pomace (ACAP) were synthesized as adsorbents for the removal of heavy metals. The prepared biomass adsorbents were analyzed by FTIR, BET, EDS and FE-SEM. The Box-Behnken design was applied to optimize the process. The influence of pH, the time of removal, the type of adsorbent and concentration of heavy metal on the adsorption performance were investigated by batch experiments. The results revealed that ACAP, APMS and ACAP adsorbents were able to remove approximately 95% of zinc, cadmium, lead and copper from wastewater. The ACAPMP indicated the best performance compared to other adsorbents in optimal condition. Also, the results exhibited excellent removal performance for Pb2+, Zn2+, Cu2+ and Cd2+ with maximum adsorption percent 99.72%, 99.28%, 99.18% and 96.45%, respectively. To define the best correlation, the equilibrium data for adsorption were studied by using Langmuir and Freundlich isotherm models. The FTIR, BET and EDS characterization of functional groups and morphology confirm the suitable preparation of ACAPMP, ACAP and APMSH. The adsorption results indicate that apple waste as low-cost and high surface capacity adsorbents can be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ce :

the equilibrium concentration of heavy metal [mg/L]

Ct :

indicate the concentration of heavy metal at time t [mg/L]

C0 :

initial concentration of metal [mg/L]

HM:

heavy metal (zinc, cadmium, lead and copper)

KF :

constant feature of the Freundlich equation [mg/g]

KL :

constant feature of the Langmuir equation [L/mg]

m:

mass of the adsorbent [g]

n:

constant feature of the Freundlich equation

qe :

adsorption capacity in equilibrium state [mg/g]

qm :

the maximum adsorption capacity [mg/g]

qt :

adsorption capacity of heavy metal at time t [mg/g]

R2 :

coefficient correlation

V:

volume of metal solution [mL]

X:

independent variables

References

  1. J. Emsley, Nature’s building blocks, new edition, Oxford Univ. Press, Oxford (2011).

    Google Scholar 

  2. L. F. Kozin and S. C. Hansen, Mercury handbook: chemistry, applications and environmental impact, R. soc. chem., UK (2013).

    Google Scholar 

  3. H. Ali and E. Khan, Toxicol. Environ. Chem., 100, 6 (2018).

    Article  CAS  Google Scholar 

  4. A. Tolcin, U.S. Geological Survey, Mineral Commodity Summaries 2020, Independently Published (2020).

  5. Statista Research Department. World production of lead from 2006 to 2018 2019, Dec 1; Available from: https://www.statista.com/statistics/264872/world-production-of-lead-metal/ (2020).

  6. D. R. Lide, CRC handbook of chemistry and physics, Vol. 85, CRC press, Boca Raton (2004).

    Google Scholar 

  7. R. C. Dart, K. M. Hurlbut and L. V. Boyer-Hassen, Medical toxicology, Lippincott Williams & Wilkins, Philadelphia (2004).

    Google Scholar 

  8. D. Denoyer, S.A. Clatworthy and M.A. Cater, Met. Ions Life Sci., 18, 1 (2018).

    Google Scholar 

  9. Statista Research Department, Total copper mine production worldwide from 2006 to 2020 (2021).

  10. O. Deubzer, Waste electrical and electronic equipment (WEEE) handbook, Elsevier, Netherlands (2019).

    Google Scholar 

  11. M. Ohgaki, Y. Takeguchi, S. Okawa and K. Namiki, R. Soc. Open Sci., 6, 1 (2019).

    Article  CAS  Google Scholar 

  12. V Masindi and K. L. Muedi, Heavy Metals, 10, 115 (2018).

    Google Scholar 

  13. G. WHO, World Health Organ., 216, 303 (2011).

  14. A. E. Burakov, E. V Galunin, I. V. Burakova, A. E. Kucherova, S. Agarwal, A. G. Tkachev and V. K. Gupta, Ecotoxicol. Environ. Saf., 148, 702 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. R. Yous, F. Mohellebi, H. Cherifi and A. Amrane, Korean J. Chem. Eng., 35, 890 (2018).

    Article  CAS  Google Scholar 

  16. S. S. Fiyadh, M. A. AlSaadi, W. Z. B. Jaafar, M. K. AlOmar, S. S. Fayaed, N. S. B. Mohd, L. S. Hin and A. El-Shafie, J. Cleaner Prod., 230, 783 (2019).

    Article  CAS  Google Scholar 

  17. H. Chen, A. Xie and S. You, IOP Conf. Ser.: Mater. Sci. Eng. 301 (2018).

  18. R. K. Liew, C. Chai, P. N. Y. Yek, X. Y. Phang, M. Y. Chong, W. L. Nam, M. H. Su, W. H. Lam, N. L. Ma and S. S. Lam, J. Cleaner Prod., 208, 1436 (2019).

    Article  CAS  Google Scholar 

  19. S. Y. Foong, R. K. Liew, Y. Yang, Y. W. Cheng, P. N. Y. Yek, W. A. W. Mahari, X. Y. Lee, C. S. Han, D.-V.-N. Vo and Q. Van Le, Chem. Eng. J., 389, 1 (2020).

    Article  CAS  Google Scholar 

  20. H. Marsh and F. R. Reinoso, Activated carbon, Elsevier, Netherlands (2006).

    Book  Google Scholar 

  21. M. Zhao, Y. Xu, C. Zhang, H. Rong and G. Zeng, Appl. Microbiol. Biotechnol., 100, 6509 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. P. Chand and Y. B. Pakade, Environ. Sci. Pollut. Res., 22, 10919 (2015).

    Article  CAS  Google Scholar 

  23. P. Chand, A. Bafana and Y. B. Pakade, Int. Biodeterior. Biodegrad., 97, 60 (2015).

    Article  CAS  Google Scholar 

  24. P. Chand, M. Bokare and Y. B. Pakade, Environ. Sci. Pollut. Res., 24, 10454 (2017).

    Article  CAS  Google Scholar 

  25. E. Heraldy, W. W. Lestari, D. Permatasari and D. D. Arimurti, J. Environ. Chem. Eng., 6, 1201 (2018).

    Article  CAS  Google Scholar 

  26. I. Enniya, L. Rghioui and A. Jourani, Sustainable Chem. Pharm., 7, 9 (2018).

    Article  Google Scholar 

  27. V. Jangde, P. Umathe, P. S. Antony, V. Shinde and Y. Pakade, Int. J. Environ. Sci. Technol., 16, 6347 (2019).

    Article  CAS  Google Scholar 

  28. C. Y. Cheok, N. M. Adzahan, R. A. Rahman, N. H. Z. Abedin, N. Hussain, R. Sulaiman and G. H. Chong, Crit. Rev. Food Sci. Nutr., 58, 335 (2018).

    PubMed  Google Scholar 

  29. T. D. Šoštarić, M. S. Petrović, F. T. Pastor, D. R. Lončarević, J. T. Petrović, J. V. Milojković and M. D. Stojanović, J. Mol. Liq., 259, 340 (2018).

    Article  CAS  Google Scholar 

  30. H. Wang, B. Gao, S. Wang, J. Fang, Y. Xue and K. Yang, Bioresour. Technol., 197, 356 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).

    Article  CAS  Google Scholar 

  32. H. Freundlich, Z. Phys. Chem., 57, 385 (1907).

    Article  CAS  Google Scholar 

  33. R. H. Myers, D. C. Montgomery and C. M. Anderson-Cook, Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons, Hoboken (2016).

    Google Scholar 

  34. F. Melnikova, B. C. Geohagen, T. Gavin, R. M. LoPachin, P.T. Anastas, P. Coish and D. W. Herrf, NeuroToxicology, 79, 95 (2020).

    Article  CAS  Google Scholar 

  35. C. Qi, H. Liu, S. Deng, A. Yang and Z. Li, Res. Che. Inter., 44, 2889 (2018).

    Article  CAS  Google Scholar 

  36. V. Czitrom, Am. Statistician, 53, 126 (1999).

    Google Scholar 

  37. A. R. Kaveeshwar, S. K. Ponnusamy, E. D. Revellame, D. D. Gang, M. E. Zappi and R. Subramaniam, Process Saf. Environ. Prot., 114, 107 (2018).

    Article  CAS  Google Scholar 

  38. J.-H. Park, Y. S. Ok, S.-H. Kim, J.-S. Cho, J.-S. Heo, R. D. Delaune and D.-C. Seo, Chemosphere, 142, 77 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. J. J. Niu, J. N. Wang, Y. Jiang, L. F. Su and J. Ma, Micropor. Mesopor. Mater., 100, 1 (2007).

    Article  CAS  Google Scholar 

  40. D. L. Pavia, G. M. Lampman, G. S. Kriz and J. A. Vyvyan, Introduction to spectroscopy, Cengage Learning, Boston (2008).

    Google Scholar 

  41. A. Karimi, E. Fatehifar and R. Alizadeh, Iran. J. Chem. Eng., 10, 51 (2013).

    Google Scholar 

  42. G. Bhongale, D. Kulkarni and V. Sapre, Bull. Mater. Sci., 15, 121 (1992).

    Article  CAS  Google Scholar 

  43. S. A. Patil, V. C. Mahajan, A. K. Ghatage and S. D. Lotke, Mater. Chem. Phys., 57, 86 (1998).

    Article  CAS  Google Scholar 

  44. A. Pradeep and G. Chandrasekaran, Mater. Lett., 60, 371 (2006).

    Article  CAS  Google Scholar 

  45. K. M. Doke and E. M. Khan, Arabian J. Chem., 10, 252 (2017).

    Article  CAS  Google Scholar 

  46. K. P. D. A. N’Goran, D. Diabaté, K. M. Yao, N. L. B. Kouassi, U. P. Gnonsoro, K. C Kinimo and Trokourey, Arabian J. Geosci., 11, 498 (2018).

    Article  CAS  Google Scholar 

  47. C. Wang and H. Wang, J. Cleaner Prod., 184, 921 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asadollah Karimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomravi, Y., Karimi, A. & Azimi, H. Adsorption of heavy metal ions via apple waste low-cost adsorbent: Characterization and performance. Korean J. Chem. Eng. 38, 1843–1858 (2021). https://doi.org/10.1007/s11814-021-0802-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0802-8

Keywords

Navigation