Skip to main content
Log in

Dissecting a Resonance Wedge on Heteroclinic Bifurcations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This article studies routes to chaos occurring within a resonance wedge for a 3-parametric family of differential equations acting on a 3-sphere. Our starting point is an autonomous vector field whose flow exhibits an attracting heteroclinic network made by two 1-dimensional connections and a 2-dimensional separatrix between two equilibria with different Morse indices. After changing the parameters, while keeping the 1-dimensional connections unaltered, we concentrate our study in the case where the 2-dimensional invariant manifolds of the equilibria do not intersect. We derive the first return map near the network and we reduce the analysis of the system to a 2-dimensional map on the cylinder. Complex dynamical features arise from a discrete-time Bogdanov–Takens singularity, which may be seen as the organizing center by which one can obtain infinitely many attracting tori, strange attractors, infinitely many sinks and non-trivial contracting wandering domains. These dynamical phenomena occur within a structure that we call resonance wedge. As an application, we may see the “classical” Arnold tongue as a projection of a resonance wedge. The results are general, extend to other contexts and lead to a fine-tuning of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The existence of rotational horseshoes, described in Appendix A.8, is responsible for the existence of an interval of rotation number—see [43].

  2. Also called Belyakov transitions.

  3. The terminology Bykov is a homage to V. Bykov who dedicated his latest research projects to similar cycles [18, 19].

  4. A \(\mathcal {F}_{\mu }\)-fixed point O is dissipative if O is hyperbolic and \(|\det \mathcal {F}_{\mu }(O)| <1\).

  5. The open set is defined in the phase space; the set \(\tilde{\mathcal {V}}\) is defined in the space of parameters.

  6. The invariant circles, in the first return map, do not envelop the phase cylinder.

References

  1. Afraimovich, V.S., Shilnikov, L.P.: On invariant two-dimensional tori, their breakdown and stochasticity. In: Methods of the Qualitative Theory of Differential Equations, pp. 3–26, Gor’kov. Gos. University (1983). Translated in: Amer. Math. Soc. Transl., (2), 149, 201–212 (1991)

  2. Afraimovich, V.S., Hsu, S.-B., Lin, H.E.: Chaotic behavior of three competing species of May-Leonard model under small periodic perturbations. Int. J. Bifurc. Chaos 11(2), 435–447 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Afraimovich, V.S., Hsu, S.B.: Lectures on Chaotic Dynamical Systems. American Mathematical Society and International Press, Cambridge (2002)

    MATH  Google Scholar 

  4. Aguiar, M.: Vector fields with heteroclinic networks, Ph.D. thesis, Departamento de Matemática Aplicada, Faculdade de Ciências da Universidade do Porto (2003)

  5. Aguiar, M.A.D., Castro, S.B.S.D., Labouriau, I.S.: Dynamics near a heteroclinic network. Nonlinearity 18, 391–414 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Algaba, A., Merino, M., Rodríguez-Luis, A.: Takens-Bogdanov bifurcations of periodic orbits and Arnold’s tongues in a three-dimensional electronic model. Int. J. Bifurc. Chaos 11(02), 513–531 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anishchenko, V., Safonova, M., Chua, L.: Confirmation of the Afraimovich-Shilnikov torus-breakdown theorem via a torus circuit. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 40(11), 792–800 (1993)

    Article  MATH  Google Scholar 

  8. Arnold, V.: Small denominators. I. Mapping the circle onto itself, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 25(1), 21–86 (1961)

    Google Scholar 

  9. Arrowsmith, D., Cartwright, J., Lansbury, A., Place, C.: The Bogdanov map: bifurcations, mode locking, and chaos in a dissipative system. Int. J. Bifurc. Chaos 3(04), 803–842 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Aronson, D., Chory, M., Hall, G., McGehee, R.: Bifurcations from an invariant circle for two-parameter families of maps of the plane: a computer-assisted study. Commun. Math. Phys. 83(3), 303–354 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Ashwin, P., Chossat, P.: Attractors for robust heteroclinic cycles with continua of connections. J. Nonlinear Sci. 8(2), 103–129 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Baldomá, I., Ibáñez, S., Seara, T.: Hopf-Zero singularities truly unfold chaos. Commun. Nonlinear Sci. Numer. Simul. 84, 105162 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bakri, T., Verhulst, F.: Bifurcations of quasi-periodic dynamics: torus breakdown. Zeitschrift für angewandte Mathematik und Physik 65(6), 1053–1076 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bakri, T., Kuznetsov, Y., Verhulst, F.: Torus bifurcations in a mechanical system. J. Dyn. Differ. Equ. 27(3–4), 371–403 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Boyland, P.L.: Bifurcations of circle maps: Arnold tongues, bistability and rotation intervals. Commun. Math. Phys. 106, 353–381 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Broer, H., Roussarie, R., Simó, C.: Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphisms. Ergod. Theory Dynam. Syst. 16, 1147–1172 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Broer, H., Simó, C., Tatjer, J.C.: Towards global models near homoclinic tangencies of dissipative diffeomorphisms. Nonlinearity 11, 667–770 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Bykov, V.V.: On systems with separatrix contour containing two saddle-foci. J. Math. Sci. 95, 2513–2522 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bykov, V.V.: Orbit Structure in a neighborhood of a separatrix cycle containing two saddle-foci. Am. Math. Soc. Transl. 200, 87–97 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Capiński, M.J., Fleurantin, E., James, J.M.: Computer assisted proofs of two-dimensional attracting invariant tori for ODEs. Discret. Contin. Dyn. Syst. A 40(12), 6681–6707 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Castro, M.L., Rodrigues,A.A.P.: Torus-breakdownnear a heteroclinic attractor: acase study. Int. J. Bifurc.Chaos 31(10). (2021). https://doi.org/10.1142/S0218127421300299

  22. Denjoy, A.: Sur les courbes définies par les équations différentielles a la surface du tore. J. Math. Pures Appl. 11, 333–375 (1932)

    MATH  Google Scholar 

  23. Gaspard, P.: Local birth of homoclinic chaos. Phys. D: Nonlinear Phenom. 62(1–4), 94–122 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Gonchenko, S.V., Shilnikov, L.P., Turaev, D.V.: Quasiattractors and homoclinic tangencies. Comput. Math. Appl. 34(2–4), 195–227 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Greenspan, B., Holmes, P.: Repeated resonance and homoclinic bifurcation in a periodically forced family of oscillators. SIAM J. Math. Anal. 15(1), 69–97 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Appl. Math. Sci. 42, Springer-Verlag (1983)

    MathSciNet  Google Scholar 

  27. Herman, M.: Mesure de Lebesgue et Nombre de Rotation. Lecture Notes in Mathematics, vol. 597, pp. 271–293. Springer, Berlin (1977)

  28. Herman, M.: Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Publications Mathématiques de l’IHÉS 49, 5–233 (1979)

  29. Hirsch, M.W., Pugh, C., Shub, M.: Invariant manifolds. Bull. Am. Math. Soc. 76(5), 1015–1019 (1970)

    Article  MATH  Google Scholar 

  30. Homburg, A.J., Sandstede, B.: Homoclinic and heteroclinic bifurcations in vector fields. In: Handbook of Dynamical Systems, vol. 3, pp. 379–524. North Holland, Amsterdam (2010)

  31. Kim, S., MacKay, R., Guckenheimer, J.: Resonance regions for families of torus maps. Nonlinearity 2(3), 391–404 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Kirk, V.: Merging of resonance tongues. Phys. D: Nonlinear Phenom. 66(3–4), 267–281 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Kirk, V., Rucklidge, A.: The effect of symmetry breaking on the dynamics near a structurally stable heteroclinic cycle between equilibria and a periodic orbit. Dynam. Syst. 23(1), 43–74 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kiriki, S., Soma, T.: Takens’ last problem and existence of non-trivial wandering domains. Adv. Math. 306, 524–588 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Knobloch, J., Lamb, J.S.W., Webster, K.N.: Using Lin’s method to solve Bykov’s problems. J. Differ. Equ. 257(8), 2984–3047 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Labouriau, I.S., Rodrigues, A.A.P.: Dense heteroclinic tangencies near a Bykov cycle. J. Differ. Equ. 259(12), 5875–5902 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Labouriau, I.S., Rodrigues, A.A.P.: Bifurcations from an attracting heteroclinic cycle under periodic forcing. J. Differ. Equ. 269(5), 4137–4174 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Langford, W.F.: Numerical studies of torus bifurcations. In: Numerical Methods for Bifurcation Problems, pp. 285–295. Birkhäuser, Basel (1984)

  39. Mora, L., Viana, M.: Abundance of strange attractors. Acta Math. 171(1), 1–71 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  40. Newhouse, S.E.: The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 50, 101–151 (1979)

    Article  MATH  Google Scholar 

  41. Ostlund, S., Rand, D., Sethna, J., Siggia, E.: Universal properties of the transition from quasi-periodicity to chaos in dissipative systems. Phys. D: Nonlinear Phenom. 8(3), 303–342 (1983)

    Article  ADS  MATH  Google Scholar 

  42. Ovsyannikov, I.M., Shilnikov, L.P.: On systems with a saddle-focus homoclinic curve. Math. USSR Sb. 58, 557–574 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  43. Passeggi, A., Potrie, R., Sambarino, M.: Rotation intervals and entropy on attracting annular continua. Geom. Topol. 22(4), 2145–2186 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Peckham, B.: The necessity of the Hopf bifurcation for periodically forced oscillators. Nonlinearity 3(2), 261–280 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Peckham, B., Frouzakis, C., Kevrekidis, I.: Bananas and banana splits: a parametric degeneracy in the Hopf bifurcation for maps. SIAM J. Math. Anal. 26(1), 190–217 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  46. Peckham, B., Kevrekidis, I.: Lighting Arnold flames: resonance in doubly forced periodic oscillators. Nonlinearity 15, 405–428 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Rodrigues, A.A.P.: Persistent switching near a heteroclinic model for the geodynamo problem. Chaos Solitons Fractals 47, 73–86 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Rodrigues, A.A.P.: Repelling dynamics near a Bykov cycle. J. Dyn. Differ. Equ. 25(3), 605–625 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rodrigues, A.A.P.: Strange attractors and wandering domains near a homoclinic cycle to a bifocus. J. Differ. Equ. 269(4), 3221–3258 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Rodrigues, A.A.P.: Unfolding a Bykov attractor: from an attracting torus to strange attractors. J. Dyn. Differ. Equ. (2020). https://doi.org/10.1007/s10884-020-09858-z

    Article  Google Scholar 

  51. Ruelle, D., Takens, F.: On the nature of turbulence, Les rencontres physiciens-mathématiciens de Strasbourg-RCP25 12, 1–44 (1971)

  52. Shilnikov, A., Nicolis, G., Nicolis, C.: Bifurcation and predictability analysis of a low-order atmospheric circulation model. Int. J. Bifurc. Chaos Appl. Sci. Eng. 5(06), 1701–1711 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  53. Shilnikov, A., Shilnikov, L.P., Turaev, D.: On some mathematical topics in classical synchronization. A tutorial. Int. J. Bifurc. Chaos Appl. Sci. Eng. 14, 2143–2160 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang, Q., Oksasoglu, A.: Dynamics of homoclinic tangles in periodically perturbed second-order equations. J. Differ. Equ. 250(2), 710–751 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Wang, Q., Young, L.S.: From invariant curves to strange attractors. Commun. Math. Phys. 225, 275–304 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Yagasaki, K.: Melnikov’s method and codimension-two bifurcations in forced oscillations. J. Differ. Equ. 185, 1–24 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Isabel Labouriau for the fruitful discussions during the research work performed in [37]. Special thanks to Andrey Shilnikov for pointing out the paper [52] on bifurcations analysis of a low-order atmospheric circulation model. The author is indebted to the two reviewers for the constructive comments, corrections and suggestions which helped to improve the readability of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre A. P. Rodrigues.

Additional information

Communicated by Peter Balint.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

AR was partially supported by CMUP (UID/MAT/00144/2020), which is funded by FCT with national (MCTES) and European structural funds through the programs FEDER, under the partnership agreement PT2020. AR also acknowledges financial support from Program INVESTIGADOR FCT (IF/00107/2015)

Appendix A. Glossary

Appendix A. Glossary

We record a miscellaneous collection of terms and terminology that are used throughout the text. For \(\varepsilon >0\) small, consider the 3-parameter family of \(C^3\)–smooth autonomous differential equations

$$\begin{aligned} \dot{x}=f_{(A, \lambda , \omega )}(x)\qquad x\in {\mathbb {S}}^3\subset {\mathbb {R}}^4 \qquad A, \lambda \in [0, \varepsilon ], \qquad \omega \in {\mathbb {R}}^+. \end{aligned}$$
(A.1)

Since \({\mathbb {S}}^3\) is a compact set without boundary, the local solutions of (A.1) could be extended to \({\mathbb {R}}\). Denote by \(\varphi _{(A, \lambda , \omega )}(t,x)\), \(t \in {\mathbb {R}}\), the associated flow.

1.1 Symmetry

Given a compact Lie group \(\mathcal {G}\) of endomorphisms of \({\mathbb {R}}^4\), we will consider 3-parameter families of vector fields \((f_{(A, \lambda , \omega )})\) under the equivariance assumption

$$\begin{aligned} f_{(A, \lambda , \omega )}(\gamma x)=\gamma f_{(A, \lambda , \omega )}(x) \end{aligned}$$

for all \(x \in {\mathbb {S}}^3\), \(\gamma \in \mathcal {G}\) and \((A, \lambda , \omega )\in [0, \varepsilon ]^2\times {\mathbb {R}}^+.\) For an isotropy subgroup \(\widetilde{\mathcal {G}}< \mathcal {G}\), we write \({\text {Fix}}(\widetilde{\mathcal {G}})\) for the vector subspace of points that are fixed by the elements of \(\widetilde{\mathcal {G}}\). Note that, for \(\mathcal {G}-\)equivariant differential equations, the subspace \({\text {Fix}}(\widetilde{\mathcal {G}})\) is flow-invariant.

1.2 Attracting Set

A subset \(\Omega \) of \( {\mathbb {S}}^3\) for which there exists a neighborhood \(U \subset {\mathbb {S}}^3\) satisfying \(\varphi _{(A, \lambda , \omega )}(t,U)\subset U\) for all \(t\ge 0\) and

$$\begin{aligned} \displaystyle \bigcap _{t\,\in \,{\mathbb {R}}^+}\,\varphi _{(A, \lambda , \omega )}(t,U)=\Omega \end{aligned}$$

is called an attracting set by the flow of (A.1). This set is not necessarily connected. Its basin of attraction, denoted by \(\mathbf{B} (\Omega )\), is the set of points in \( {\mathbb {S}}^3\) whose orbits have \(\omega -\)limit in \(\Omega \). We say that \(\Omega \) is asymptotically stable (or \(\Omega \) is a global attractor) if \(\mathbf{B} (\Omega )= {\mathbb {S}}^3\). An attracting set is said to be quasi-stochastic if it encloses periodic solutions with different Morse indices (dimension of the unstable manifold), structurally unstable cycles, sinks and saddle-type invariant sets (cf. [24]).

1.3 Heteroclinic Structures

Suppose that \(O_1\) and \(O_2\) are two hyperbolic equilibria of (A.1) with different Morse indices (dimension of the unstable manifold). There is a heteroclinic cycle associated to \(O_1\) and \(O_2\) if

$$\begin{aligned} W^{u}(O_1)\cap W^{s}(O_2)\ne \emptyset \qquad \text {and} \qquad W^{u}(O_2)\cap W^{s}(O_1)\ne \emptyset . \end{aligned}$$

For \( i\ne j \in \{1,2\}\), the non-empty intersection of \(W^{u}(O_i)\) with \(W^{s}(O_j)\) is called a heteroclinic connection between \(O_i\) and \(O_j\), and will be denoted by \([O_i \rightarrow O_j]\). Although heteroclinic cycles involving equilibria are not a generic property within differential equations, they may be structurally stable within families of vector fields which are equivariant under the action of a compact Lie group \(\mathcal {G}\subset \mathbb {O}(4)\), due to the existence of flow-invariant subspaces [26].

A heteroclinic cycle between two hyperbolic saddle-foci of different Morse indices, where one of the connections is transverse while the other is structurally unstable, is called a Bykov cycle. We address the reader to [30] for an overview of heteroclinic bifurcations and substantial information on the dynamics near different types of structures.

1.4 Historic Behaviour

We say that the solution of (A.1), \(\varphi _{(A, \lambda , \omega )}(t,x)\) with \(x \in {\mathbb {S}}^3\), has historic behaviour if there is a continuous function \({H}:{\mathbb {S}}^3\rightarrow {\mathbb {R}}\) such that the time average \(\displaystyle \frac{1}{T}\int _{0}^{T} {H} (\varphi _{(A, \lambda , \omega )}(t,x)) dt\, \, \) fails to converge.

1.5 Strange Attractor

A (Hénon-type) strange attractor of a two-dimensional dissipative diffeomorphism R defined in a Riemannian manifold \(\mathcal {M}\), is a compact invariant set \(\Lambda \) with the following properties:

  • \(\Lambda \) equals the closure of the unstable manifold of a hyperbolic periodic point;

  • the basin of attraction of \(\Lambda \) contains an open set;

  • there is a dense orbit in \(\Lambda \) with a positive Lyapounov exponent (exponential growth of the derivative along its orbit).

A vector field possesses a strange attractor if the first return map to a cross section does.

1.6 SRB Measure

Given an attracting set \({\Omega }\) for a continuous map \(R: \mathcal {M} \rightarrow \mathcal {M}\) where \( \mathcal {M}\) is a compact smooth manifold, consider the Birkhoff average with respect to the continuous function \(T: \mathcal {M} \rightarrow {\mathbb {R}}\) on the R-orbit starting at \(x\in \mathcal {M}\):

$$\begin{aligned} L(T, x)=\lim _{n\in {\mathbb {N}}} \quad \frac{1}{n} \sum _{i=0}^{n-1} T \circ R^i(x). \end{aligned}$$
(A.2)

Suppose that, for Lebesgue almost all points \(x\in \mathbf{B} ({\Omega })\), the limit (A.2) exists and is independent on x. Then L is a continuous linear functional in the set of continuous maps from \(\mathcal {M}\) to \({\mathbb {R}}\) (denoted by \(C(\mathcal {M}, {\mathbb {R}})\)). By the Riesz Representation Theorem, it defines a unique probability measure \(\mu \) such that:

$$\begin{aligned} \lim _{n\in {\mathbb {N}}} \quad \frac{1}{n} \sum _{i=0}^{n-1} T \circ R^i(x) = \int _{\Omega } T \, d\mu \end{aligned}$$
(A.3)

for all \(T\in C(\mathcal {M}, {\mathbb {R}})\) and for Lebesgue almost all points \(x\in \mathbf{B} ({\Omega })\). If there exists an ergodic measure \(\mu \) supported in \({\Omega }\) such that (A.3) is satisfied for all continuous maps \(T\in C(\mathcal {M}, {\mathbb {R}})\) for Lebesgue almost all points \(x\in \mathbf{B} ({\Omega })\), where \(\mathbf{B} ({\Omega })\) has positive Lebesgue measure, then \(\mu \) is called a SRB (Sinai-Ruelle-Bowen) measure and \({\Omega }\) is a SRB attractor. More details in [55].

1.7 Non-trivial Wandering Domains

A non-trivial wandering domain for a given map R on a Riemannian manifold \( \mathcal {M}\) is a non-empty connected open set \(D \subset \mathcal {M}\) which satisfies the following conditions:

  • \(R^i(D)\cap R^j(D)=\emptyset \) for every \(i,j\ge 0\) (\(i\ne j\))

  • the union of the \(\omega \)-limit sets of points in D for R, denoted by \(\Omega (D,R)\), is not equal to a single periodic orbit.

A wandering domain D is called contracting if the diameter of \(R^n(D)\) converges to zero as \(n \rightarrow +\infty \).

1.8 Rotational Horseshoe

Let \(\mathcal {H} \) stand for the infinite annulus \(\mathcal {H} = {\mathbb {S}}^1 \times {\mathbb {R}}\) (endowed with the usual inner product from \({\mathbb {R}}^2\)). We denote by \(Homeo^+(\mathcal {H} )\) the set of homeomorphisms of the annulus which preserve orientation. Given a homeomorphism \(f :X \rightarrow X\) and a partition of \(m\in {\mathbb {N}}\backslash \{1\}\) elements \(R_0,..., R_{m-1}\) of \(X\subset \mathcal {H}\), the itinerary function \(\xi : X \rightarrow \{0, ..., m-1\}^{\mathbb {Z}}= \Sigma _m\) is defined by:

$$\begin{aligned} \xi (x)(j)=k\quad \Leftrightarrow \quad f^j(x)\in R_k, \quad \text {for every} \quad j\in {\mathbb {Z}}. \end{aligned}$$

Following [43], we say that a compact invariant set \(\Lambda \subset \mathcal {H} \) of \(f \in Homeo^+(\mathcal {H} )\) is a rotational horseshoe if it admits a finite partition \(P =\{R_0, ..., R_{m-1} \}\) by sets \(R_i\) with non empty interior in \(\Lambda \) so that:

  • the itinerary \(\xi \) defines a semi-conjugacy between \(f|_\Lambda \) and the full-shift \(\sigma : \Sigma _m \rightarrow \Sigma _m\), that is \(\xi \circ f = \sigma \circ \xi \) with \(\xi \) continuous and onto;

  • for any lift \(F: {\mathbb {R}}^2 \rightarrow {\mathbb {R}}^2\) of f, there exist \(k>0\) and m vectors \(v_0, ...,v_{m-1} \in {\mathbb {Z}}\times \{0\}\) so that:

    $$\begin{aligned} \left\| (F^n(\hat{x})-\hat{x}) - \sum _{i=0}^n v_{\xi (x)(i)}\right\| <k \qquad \text {for every} \qquad \hat{x}\in \pi ^{-1}(\Lambda ), \quad n\in {\mathbb {N}}, \end{aligned}$$

    where \(\Vert \star \Vert \) is the usual norm on \({\mathbb {R}}^2\), \(\pi :{\mathbb {R}}^2\rightarrow \mathcal {H}\) denotes the usual projection map and \(\hat{x} \in \pi ^{-1}(\Lambda )\) is the lift of x; more details in the proof of Lemma 3.1 of [43]. The existence of a rotational horseshoe for a map implies positive topological entropy at least \( \log m \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, A.A.P. Dissecting a Resonance Wedge on Heteroclinic Bifurcations. J Stat Phys 184, 25 (2021). https://doi.org/10.1007/s10955-021-02811-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02811-4

Keywords

Mathematics Subject Classification

Navigation