Skip to main content
Log in

Controlling the local-ensemble structure in mesoporous hybrid titania-silica thin films containing aminopropyl groups

  • Original Paper: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mesoporous hybrid materials containing inorganic and organic functional groups are relevant for advanced applications in separation, sorption or heterogeneous catalysis. The possibility of combining materials with high surface area and tailorable mesopore size with a mixed oxide framework and organic functions open the gate to imitating complex biosystems such as enzyme active sites. One of the critical aspects towards a multiscale control of these complex materials is the understanding of the actual framework structure and the interplay of the framework ions and the organic functions, and how these features are related to the sol-gel preparation conditions. In this work, mesoporous hybrid organic-inorganic thin films (MHTF) based on a mixed silica-titania matrix containing 20% aminopropyl functions were prepared and thoroughly studied by X-ray absorption spectroscopy at both the Ti and Si K-edges, and by O1s and N1s X-ray photoelectron spectroscopy. This approach permitted us to simultaneously probe the changes in Si and Ti coordination, the linkages between the inorganic centers, and the availability of the amino functions along samples with varying Si:Ti ratio. We find substantial differences between the local structure of pure inorganic oxides and the hybrid materials. In the oxides, increasing the %Ti leads to an increase in octahedral Si sites and Ti-oxo clusters with shorter Ti-O bonds. In the hybrid materials, higher Ti coordination with longer bonds are observed, along with a prevalence of Si centers with distorted tetrahedral coordination. These findings suggest that aminopropyl building blocks act as a compatibilizer between Ti(IV) and Si(IV) centers, leading to a hybrid mixed phase with large silica-titania interface. This intermixing also influences the exposition of amino groups at the pore surface. These aspects are of importance in the design of high surface area adsorbents, permselective membranes or heterogeneous catalysts.

The structure of highly organized mesoporous thin films with aminopropyl groups and Si-Ti framework can be precisely determined by combining XANES and XPS. Functionality can be controlled from synthesis.

Highlights

  • Highly organized mesoporous thin films with aminopropyl groups and Si-Ti framework are synthesized from a one-pot, low-temperature method.

  • We present an exhaustive spectroscopic study of these materials by combining XANES and XPS.

  • Ti and Si K-Edge XANES permit to assess the changes in bonding and coordination of both cations in mixed oxide and hybrid matrices.

  • XPS measurements permit to understand the formation of Si-O-Ti interfaces and the availability of the amino groups.

  • This study permits to link sol-gel processing conditions to the structure of complex hybrid mesoporous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Supplementary Data are available at the Publisher.

References

  1. Kickelbick G (2007) Hybrid materials: synthesis, characterization, and applications. WILEY-VCH Verlag

  2. Nicole L, Boissiere C, Grosso D et al. (2005) Mesostructured hybrid organic-inorganic thin films. J Mater Chem 15:3598–3627. https://doi.org/10.1039/B506072A

    Article  CAS  Google Scholar 

  3. Sanchez C, Belleville P, Popall M, Nicole L (2011) Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40:696–753. https://doi.org/10.1039/c0cs00136h

    Article  CAS  Google Scholar 

  4. Faustini M, Nicole L, Ruiz-Hitzky E, Sanchez C (2018) History of organic–inorganic hybrid materials: prehistory, art, science, and advanced applications. Adv Funct Mater 28. https://doi.org/10.1002/adfm.201704158

  5. Ruiz-Hitzky E, Wicklein B (2018) The fascinating world of the functional hybrid and biohybrid materials. Adv Funct Mater 28:1803407. https://doi.org/10.1002/adfm.201803407

    Article  CAS  Google Scholar 

  6. Park SS, Ha C-S (2018) Hollow hybrid materials: hollow mesoporous functional hybrid materials: fascinating platforms for advanced applications. Adv Funct Mater 28:1870183. https://doi.org/10.1002/adfm.201870183

    Article  CAS  Google Scholar 

  7. Margelefsky EL, Zeidan RK, Davis ME (2008) Cooperative catalysis by silica-supported organic functional groups. Chem Soc Rev 37:1118–1126. https://doi.org/10.1039/b710334b

    Article  CAS  Google Scholar 

  8. Climent MJ, Corma A, Iborra S (2011) Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem Rev 111:1072–1133. https://doi.org/10.1021/cr1002084

    Article  CAS  Google Scholar 

  9. Díaz U, Brunel D, Corma A (2013) Catalysis using multifunctional organosiliceous hybrid materials. Chem Soc Rev 42:4083–4097. https://doi.org/10.1039/c2cs35385g

    Article  CAS  Google Scholar 

  10. Fernandes AE, Jonas AM (2019) Design and engineering of multifunctional silica-supported cooperative catalysts. Catal Today 334:173–186. https://doi.org/10.1016/j.cattod.2018.11.040

    Article  CAS  Google Scholar 

  11. Notestein JM, Katz A (2006) Enhancing heterogeneous catalysis through cooperative hybrid organic-inorganic interfaces. Chem - A Eur J 12:3954–3965. https://doi.org/10.1002/chem.200501152

    Article  CAS  Google Scholar 

  12. Motokura K, Tada M, Iwasawa Y (2007) Heterogeneous organic base-catalyzed reactions enhanced by acid supports. J Am Chem Soc 129:9540–9541. https://doi.org/10.1021/ja0704333

    Article  CAS  Google Scholar 

  13. Motokura K, Tada M, Iwasawa Y (2008) Cooperative catalysis of primary and tertiary amines immobilized on oxide surfaces for one-pot C-C bond forming reactions. Angew Chem—Int Ed 47:9230–9235. https://doi.org/10.1002/anie.200802515

    Article  CAS  Google Scholar 

  14. Motokura K, Tada M, Iwasawa Y (2009) Layered materials with coexisting acidic and basic sites for catalytic one-pot reaction sequences. J Am Chem Soc 131:7944–7945. https://doi.org/10.1021/ja9012003

    Article  CAS  Google Scholar 

  15. Soler-Illia GJAA, Azzaroni O (2011) Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chem Soc Rev 40:1107–1150. https://doi.org/10.1039/c0cs00208a

    Article  CAS  Google Scholar 

  16. Innocenzi P, Malfatti L (2013) Mesoporous thin films: properties and applications. Chem Soc Rev 42:4198–4216. https://doi.org/10.1039/c3cs35377j

    Article  CAS  Google Scholar 

  17. Lebeau B, Galarneau A, Linden M (2013) Introduction for 20 years of research on ordered mesoporous materials. Chem Soc Rev 42:3661–3662. https://doi.org/10.1039/c3cs90005c

    Article  CAS  Google Scholar 

  18. Brilmayer R, Förster C, Zhao L, Andrieu-Brunsen A (2020) Recent trends in nanopore polymer functionalization. Curr Opin Biotechnol 63:200–209. https://doi.org/10.1016/j.copbio.2020.03.005

    Article  CAS  Google Scholar 

  19. Soler-Illia GJAA, Innocenzi P (2006) Mesoporous hybrid thin films: the physics and chemistry beneath. Chem—Eur J 12. https://doi.org/10.1002/chem.200500801

  20. Innocenzi P, Soler-Illia G (2009) Mesoporous thin films: an example of pore engineered material. Key Eng Mater 391:109–120. https://doi.org/10.4028/www.scientific.net/KEM.391.109

    Article  CAS  Google Scholar 

  21. Soler-Illia GJAA, Vensaus P, Onna D (2021) Chemical methods to produce mesoporous thin films with tunable properties. In: Das S, Dhara S (eds) Chemical solution synthesis for materials design and thin film device applications. Elsevier, pp 195–229. https://doi.org/10.1016/B978-0-12-819718-9.00002-9

  22. Nasir T, Herzog G, Hébrant M et al. (2018) Mesoporous silica thin films for improved electrochemical detection of paraquat. ACS Sens 3:484–493. https://doi.org/10.1021/acssensors.7b00920

    Article  CAS  Google Scholar 

  23. Otal EH, Angelomé PC, Bilmes SA, Soler-Illia GJAA (2006) Functionalized mesoporous hybrid thin films as selective membranes. Adv Mater 18. https://doi.org/10.1002/adma.200502215

  24. Alberti S, Soler-Illia GJAA, Azzaroni O (2015) Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: Controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chem Commun 51:6050–6075. https://doi.org/10.1039/c4cc10414e

    Article  CAS  Google Scholar 

  25. Calvo A, Yameen B, Williams FJ, et al. (2009) Facile molecular design of hybrid functional assemblies with controllable transport properties: Mesoporous films meet polyelectrolyte brushes. Chem Commun. https://doi.org/10.1039/b822489g

  26. Calvo A, Yameen B, Williams FJ et al. (2009) Mesoporous films and polymer brushes helping each other to modulate ionic transport in nanoconfined environments. An interesting example of synergism in functional hybrid assemblies. J Am Chem Soc 131:10866–10868. https://doi.org/10.1021/ja9031067

    Article  CAS  Google Scholar 

  27. Silies L, Andrieu-Brunsen A (2018) Programming ionic pore accessibility in zwitterionic polymer modified nanopores. Langmuir 34:807–816. https://doi.org/10.1021/acs.langmuir.7b00529

    Article  CAS  Google Scholar 

  28. Andrieu-Brunsen A, Micoureau S, Tagliazucchi M et al. (2015) Mesoporous hybrid thin film membranes with PMETAC@Silica architectures: controlling ionic gating through the tuning of polyelectrolyte density. Chem Mater 27:808–821. https://doi.org/10.1021/cm5037953

    Article  CAS  Google Scholar 

  29. Rafti M, Brunsen A, Fuertes MC et al. (2013) Heterogeneous catalytic activity of platinum nanoparticles hosted in mesoporous silica thin films modified with polyelectrolyte brushes. ACS Appl Mater Interfaces 5:8833–8840. https://doi.org/10.1021/am403836f

    Article  CAS  Google Scholar 

  30. Calvo A, Fuertes MC, Yameen B et al. (2010) Nanochemistry in confined environments: polyelectrolyte brush-assisted synthesis of gold nanoparticles inside ordered mesoporous thin films. Langmuir 26:5559–5567. https://doi.org/10.1021/la9038304

    Article  CAS  Google Scholar 

  31. Yang Q, Li C (2014) Catalysis in porous-material-based nanoreactors: a bridge between homogeneous and heterogeneous catalysis. In: Can L, Yan L (eds) Bridging heterogeneous and homogeneous catalysis: concepts, strategies, and applications. WILEY-VCH Verlag, pp 351–396

  32. Chandra P, Jonas AM, Fernandes AE (2018) Sequence and surface confinement direct cooperativity in catalytic precision oligomers. J Am Chem Soc 140:5179–5184. https://doi.org/10.1021/jacs.8b00872

    Article  CAS  Google Scholar 

  33. Goettmann F, Sanchez C (2007) How does confinement affect the catalytic activity of mesoporous materials? J Mater Chem 17:24–30. https://doi.org/10.1039/b608748p

    Article  CAS  Google Scholar 

  34. Calvo A, Angelomé PC, Sánchez VM et al. (2008) Mesoporous aminopropyl-functionalized hybrid thin films with modulable surface and environment-responsive behavior. Chem Mater 20:4661–4668. https://doi.org/10.1021/cm800597k

    Article  CAS  Google Scholar 

  35. Puglisi A, Annunziata R, Benaglia M et al. (2009) Hybrid inorganic-organic materials carrying tertiary amine and thiourea residues tethered on mesoporous silica nanoparticles: synthesis, characterization, and co-operative catalysis. Adv Synth Catal 351:219–229. https://doi.org/10.1002/adsc.200800635

    Article  CAS  Google Scholar 

  36. Brunelli NA, Venkatasubbaiah K, Jones CW (2012) Cooperative catalysis with acid-base bifunctional mesoporous silica: impact of grafting and Co-condensation synthesis methods on material structure and catalytic properties. Chem Mater 24:2433–2442. https://doi.org/10.1021/cm300753z

    Article  CAS  Google Scholar 

  37. Lauwaert J, Moschetta EG, Van Der Voort P et al. (2015) Spatial arrangement and acid strength effects on acid-base cooperatively catalyzed aldol condensation on aminosilica materials. J Catal 325:19–25. https://doi.org/10.1016/j.jcat.2015.02.011

    Article  CAS  Google Scholar 

  38. Manangon-Perugachi LE, Smeets V, Vivian A, et al. (2021) Mesoporous methyl-functionalized titanosilicate produced by aerosol process for the catalytic epoxidation of olefins. https://doi.org/10.3390/catal11020196

  39. Bianconi A, Incoccia L, Stipcich S (1983) EXAFS and near edge structure. Springer-Verlag, Berlin

    Book  Google Scholar 

  40. van Bokhoven JA, Lamberti C (2015) X-ray absorption and x-ray emission spectroscopy: theory and applications

  41. Jiang N, Su D, Spence JCH (2007) Determination of Ti coordination from pre-edge peaks in Ti K -edge XANES. Phys Rev B - Condens Matter Mater Phys 76. https://doi.org/10.1103/PhysRevB.76.214117

  42. Wu Z, Xian DC, Natoli CR et al. (2001) Symmetry dependence of X-ray absorption near-edge structure at the metal K edge of 3d transition metal compounds. Appl Phys Lett 79:1918–1920. https://doi.org/10.1063/1.1405149

    Article  CAS  Google Scholar 

  43. Angelomé PC, Andrini L, Calvo ME et al. (2007) Mesoporous anatase TiO2 films: Use of Ti K XANES for the quantification of the nanocrystalline character and substrate effects in the photocatalysis behavior. J Phys Chem C 111:10886–10893. https://doi.org/10.1021/jp069020z

    Article  CAS  Google Scholar 

  44. Andrini L, Angelomé PC, Soler-Illia GJAA, Requejo FG (2016) Understanding the Zr and Si interdispersion in Zr1-xSixO2 mesoporous thin films by using FTIR and XANES spectroscopy. Dalt Trans 45:9977–9987. https://doi.org/10.1039/c6dt00203j

    Article  CAS  Google Scholar 

  45. Angelomé PC, Andrini L, Fuertes MC et al. (2010) Large-pore mesoporous titania-silica thin films (Ti1-xSixO2, 0.1 ≤ x ≤ 0.9) with highly interdispersed mixed oxide frameworks. Comptes Rendus Chim 13:256–269. https://doi.org/10.1016/j.crci.2009.07.001

    Article  CAS  Google Scholar 

  46. Calvo A, Angelomé PC, Sánchez VM et al. (2008) Mesoporous aminopropyl-functionalized hybrid thin films with modulable surface and environment-responsive behavior. Chem Mater 20:4661–4668. https://doi.org/10.1021/cm800597k

    Article  CAS  Google Scholar 

  47. Zhang JF, Wang ZM, Lyu YJ et al. (2019) Synergistic catalytic mechanism of acidic silanol and basic alkylamine bifunctional groups over SBA-15 Zeolite toward aldol condensation. J Phys Chem C 123:4903–4913. https://doi.org/10.1021/acs.jpcc.8b11941

    Article  CAS  Google Scholar 

  48. Angelomé PC, Soler-Illia GJDAA (2005) Ordered mesoporous hybrid thin films with double organic functionality and mixed oxide framework. J Mater Chem 15:3903–3912. https://doi.org/10.1039/b506484h

    Article  CAS  Google Scholar 

  49. Soler-Illia GJAA, Angelomé PC, Bozzano P (2004) Highly ordered hybrid mesoporous bifunctional thin films. Chem Commun 2854. https://doi.org/10.1039/b413260b

  50. Cagnol F, Grosso D, Sanchez C (2004) A general one-pot process leading to highly functionalised ordered mesoporous silica films. Chem Commun 4:1742–1743. https://doi.org/10.1039/b403753g

    Article  CAS  Google Scholar 

  51. Calvo A, Joselevich M, Soler-Illia GJAA, Williams FJ (2009) Chemical reactivity of amino-functionalized mesoporous silica thin films obtained by co-condensation and post-grafting routes. Microporous Mesoporous Mater 121:67–72. https://doi.org/10.1016/j.micromeso.2009.01.005

    Article  CAS  Google Scholar 

  52. Durham PJ (1987) Theory of XANES. In: Koningsberger DC, Prins R (eds) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS. Wiley, New York, NY, p 53–84

    Google Scholar 

  53. Ressler T (1998) WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. J Synchrotron Radiat 5:118–122. https://doi.org/10.1107/S0909049597019298

    Article  CAS  Google Scholar 

  54. Soler-Illia GJAA, Crepaldi EL, Grosso D, et al. (2002) Structural control in self-standing mesostructured silica oriented membranes and xerogels. Chem Commun 2. https://doi.org/10.1039/b207595d

  55. Tate MP, Urade VN, Kowalski JD et al. (2006) Simulation and interpretation of 2D diffraction patterns from self-assembled nanostructured films at arbitrary angles of incidence: from grazing incidence (above the critical angle) to transmission perpendicular to the substrate. J Phys Chem B 110:9882–9892. https://doi.org/10.1021/jp0566008

    Article  CAS  Google Scholar 

  56. Soler-Illia GJAA, Crepaldi EL, Grosso D, Sanchez C (2004) Designed synthesis of large-pore mesoporous silica-zirconia thin films with high mixing degree and tunable cubic or 2B-hexagonal mesostructure. J Mater Chem 14:1879–1886. https://doi.org/10.1039/b316033e

    Article  CAS  Google Scholar 

  57. De Groot F, Vankó G, Glatzel P (2009) The 1s X-ray absorption pre-edge structures in transition metal oxides. J Phys Condens Matter 21. https://doi.org/10.1088/0953-8984/21/10/104207

  58. Yamamoto T (2008) Assignment of pre-edge peaks in K-edge x-ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole? X-Ray Spectrom 37:572–584. https://doi.org/10.1002/xrs.1103

    Article  CAS  Google Scholar 

  59. Farges F, Brown GE, Navrotsky A et al. (1996) Coordination chemistry of Ti(IV) in silicate glasses and melts: II. Glasses at ambient temperature and pressure. Geochim Cosmochim Acta 60:3039–3053. https://doi.org/10.1016/0016-7037(96)00145-7

    Article  CAS  Google Scholar 

  60. Farges F, Brown GE (1997) Ti-edge XANES studies of Ti coordination and disorder in oxide compounds: comparison between theory and experiment. Phys Rev B—Condens Matter Mater Phys 56:1809–1819. https://doi.org/10.1103/PhysRevB.56.1809

    Article  CAS  Google Scholar 

  61. Bianconi A, Dell’Ariccia M, Gargano A, Natoli CR (1983) Bond length determination using XANES. In: Bianconi A, Incoccia L, Stipcich S (eds) EXAFS and near edge structure. Springer-Verlag, Berlin, p 57–61

    Chapter  Google Scholar 

  62. Piancastelli MN (1999) The neverending story of shape resonances. J Electron Spectros Relat Phenom 100:167–190. https://doi.org/10.1016/s0368-2048(99)00046-8

    Article  CAS  Google Scholar 

  63. Howard CJ, Sabine TM, Dickson F (1991) Structural and thermal parameters for rutile and anatase. Acta Crystallogr Sect B 47:462–468. https://doi.org/10.1107/S010876819100335X

    Article  Google Scholar 

  64. Iwamoto S, Iwamoto S, Inoue M et al. (2005) XANES and XPS study of silica-modified titanias prepared by the glycothermal method. Chem Mater 17:650–655. https://doi.org/10.1021/cm040045p

    Article  CAS  Google Scholar 

  65. Ondračka P, Nečas D, Carette M, et al. (2020) Unravelling local environments in mixed TiO2–SiO2 thin films by XPS and ab initio calculations. Appl Surf Sci 510. https://doi.org/10.1016/j.apsusc.2019.145056

  66. Permpoon S, Berthomé G, Baroux B et al. (2006) Natural superhydrophilicity of sol-gel derived SiO2-TiO2 composite films. J Mater Sci 41:7650–7662. https://doi.org/10.1007/s10853-006-0858-1

    Article  CAS  Google Scholar 

  67. Levelut C, Cabaret D, Benoit M et al. (2001) Multiple scattering calculations of the XANES Si K-edge in amorphous silica. J Non Cryst Solids 293–295:100–104. https://doi.org/10.1016/S0022-3093(01)00658-5

    Article  Google Scholar 

  68. Sutherland DGJ, Kasrai M, Bancroft GM et al. (1993) Si L- and K-edge x-ray-absorption near-edge spectroscopy of gas-phase Si(CH3)x(OCH3)4-x: models for solid-state analogs. Phys Rev B 48:14989–15001. https://doi.org/10.1103/PhysRevB.48.14989

    Article  CAS  Google Scholar 

  69. Li D, Bancroft GM, Kasrai M et al. (1994) X-ray absorption spectroscopy of silicon dioxide (SiO2) polymorphs: the structural characterization of opal. Am Miner 79:622–632

    CAS  Google Scholar 

  70. Chaboy J, Barranco A, Yanguas-Gil A et al. (2007) Si K -edge XANES study of SiOxCyHz amorphous polymeric materials. Phys Rev B - Condens Matter Mater Phys 75:075205. https://doi.org/10.1103/PhysRevB.75.075205

    Article  CAS  Google Scholar 

  71. Ohnemus DC, Krause JW, Brzezinski MA et al. (2018) The chemical form of silicon in marine Synechococcus. Mar Chem 206:44–51. https://doi.org/10.1016/j.marchem.2018.08.004

    Article  CAS  Google Scholar 

  72. Crepaldi EL, Soler-Illia GJAA, Grosso D et al. (2003) Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2. J Am Chem Soc 125:9770–9786. https://doi.org/10.1021/ja030070g

    Article  CAS  Google Scholar 

  73. Tang Q, Angelomé PC, Soler-Illia GJAA, Müller M (2017) Formation of ordered mesostructured TiO2 thin films: a soft coarse-grained simulation study. Phys Chem Chem Phys 19:28249–28262. https://doi.org/10.1039/c7cp05304e

    Article  CAS  Google Scholar 

  74. Jolivet J-P (2000) Metal oxide chemistry and synthesis: from solution to solid state. J. Wiley and Sons, Chichester

    Google Scholar 

  75. George I, Viel P, Bureau C et al. (1996) Study of the silicon/γ-APS/pyralin assembly interfaces by X-ray photoelectron spectroscopy. Surf Interface Anal 24:774–780. https://doi.org/10.1002/(SICI)1096-9918(199610)24:11<774::AID-SIA180>3.0.CO;2-X

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by CONICET (PIP No. 112-201101-01035) and ANPCyT (PICT 2017-4651, PICT 2017-1220, PICT 2018-04236, PICT 2018-03276). Synchrotron measurements were possible thanks to funding from LNLS, Campinas, Brazil: 2D SAXS (line D11A-SAXS1 Project Nos. 5867/06 and 6721/07) and XANES (line D04A-SXS Project Nos. 10808/11 and 15187/13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Galo J. A. A. Soler-Illia or Félix G. Requejo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvo, A., Andrini, L., Williams, F.J. et al. Controlling the local-ensemble structure in mesoporous hybrid titania-silica thin films containing aminopropyl groups. J Sol-Gel Sci Technol 102, 172–184 (2022). https://doi.org/10.1007/s10971-021-05579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05579-x

Keywords

Navigation