Skip to main content
Log in

Thermally stable and fast responsive mesoporous cresol red functionalized silica and titania nanomatrices: fiber optic pH sensors

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Owing to the fast responsive fiber optic pH sensing, silica nanomatrix (SNM) and titania nanomatrix (TNM) are synthesized by the sol–gel method at low temperatures. Cresol red (CR) is immobilized within SNM and TNM for sensing evaluation. Crack-free, crystallinity and porous surfaces with an average particle size of CR-SNM ~45 ± 0.4 nm and CR-TNM ~24 ± 0.4 nm are observed through microscopic analysis. The is observed in CR immobilized matrices. The CR-SNM shows lower roughness ~7 nm, a large surface area ~380 m2/g, thermal stability at ≤400 °C, and a refractive index 1.47. Whereas, CR-TNM revealed high roughness 48 nm, surface area 211 m2/g, and refractive index 1.76. The sensitivity of the CR-SNM coated fiber is estimated at around 52.8 counts/pH which is greater than CR-TNM coated fiber sensitivity 14.53 counts/pH. Moreover, CR-SNM shows response time 0.17 s at pH 12 which is faster than CR-TNM time response 0.48 s.

Highlights

  • Owing to fast responsive fiber optic pH sensing, silica nanomatrix (SNM) and titania nanomatrix (TNM) is synthesized by sol–gel method.

  • CR immobilized SNM and TNM revealed crack-free and porous surfaces with average particle size 45 ± 0.4 nm and 24 ± 0.4 nm, respectively.

  • CR-SNM shows lower roughness 7 nm, large surface area 380 m2/g, thermally stable at ≤400 °C, and refractive index 1.47.

  • CR-TNM revealed high roughness 48 nm, surface area 211 m2/g, and refractive index 1.76 at 632 nm.

  • The sensitivity of the CR-SNM and response time 0.17 s is observed higher than CR-TNM coated fiber 0.48 s at pH 12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang C, Ohodnicki Jr PR, Su X, Keller M, Brown TD, Baltrus JP (2013) Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures. Nanoscale 00:1–3

    Google Scholar 

  2. Khanikar T, Singh VK, Sheoran J (2019) A fiber optic refractive index sensor with a high index ZnO overlay. Laser Phys 29:045103. (7pp)

    Article  CAS  Google Scholar 

  3. Mujahid A, Lieberzeit PA, Dickert FL (2010) Chemical sensors based on molecularly imprinted sol-gel materials. Mater 3(4):2196–2217

    Article  CAS  Google Scholar 

  4. Guével XL, Schutzmann S, Stella L, Matteis FD, Prosposito P, Casalboni M (2008) Effect of titania content on the optical properties of dye-doped hybrid sol–gel coatings. Optical Mater 31:451–454

    Article  Google Scholar 

  5. Wencel D, Abel T, McDonagh C (2014) Optical chemical pH sensors. Anal Chem 86(1):15–29

    Article  CAS  Google Scholar 

  6. Islam S, Bidin N, Riaz S, Naseem S (2017) Self-assembled hierarchical phenolphthalein encapsulated silica nanoparticles: structural, optical and sensing response. Sens Actuators A 266:111–121

    Article  Google Scholar 

  7. Liberman A, Mendez N, Trogler WC, Kummel AC (2014) Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf Sci Rep. 69(2–3):132–158

    Article  CAS  Google Scholar 

  8. Akl MA, Youssef AM, Al-Awadhi MM (2013) Adsorption of acid dyes onto bentonite and surfactant-modified bentonite. J Anal Bioanal Tech 4(4):1–7

    Google Scholar 

  9. Chen Y, Chen H, Guo L, He Q, Chen F, Zhou J, Feng J, Shi J (2009) Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano 4:529–539

    Article  Google Scholar 

  10. Islam S, Bakhtiar H, Haider Z, Riaz S, Naseem S, Chaudhary K, Suan LP, Usman SS, Aziz MS (2019) BPB dye confined growth of surfactant-assisted mesostructured silica matrix fiber optic sensing tracers. J Saudi Chem Soc 23:427–438

    Article  CAS  Google Scholar 

  11. Islam S, Bakhtiar H, Bidin N, Salim AA, Riaz S, Krishnan G, Naseem S (2018) Crack-free high surface area silica-titania nanocomposite coating as opto-chemical sensor device. Sens Actuators A 270:153–161

    Article  CAS  Google Scholar 

  12. Nassar EJ, Ciuffi KJ, Ribeiro SJL, Messaddeq Y (2003) Europium incorporated in silica matrix obtained by sol-gel: luminescent materials. Mater Res 6(4)

  13. Chauhan SS, Jasra RV, Sharma AL (2014) Structural, optical, and pH-stimulus response properties of cresol red immobilized nanocomposite silica films derived by a sol-gel process employing different synthetic routes. Ind Eng Chem Res 53:18863–18872

    Article  CAS  Google Scholar 

  14. Wang E, Chow K-F, Kwan V, Chin T, Wong C, Bocarsly A (2003) Fast and long term optical sensors for pH based on sol–gels. Analytica Chim Acta 495:45–50

    Article  CAS  Google Scholar 

  15. El Nahhal I, Zourab S, Kodeh F, Babonneau F, Hegazy W (2012) Sol–gel encapsulation of cresol red in presence of surfactants. J Sol-Gel Sci Technol 62(2):117–125

    Article  CAS  Google Scholar 

  16. Dong S, Luo M, Peng G, Cheng W (2008) Broad range pH sensor based on sol–gel entrapped indicators on fibre optic. Sens Actuators B: Chem 129:94–98

    Article  CAS  Google Scholar 

  17. Islam S, Bakhtiar H, Aziz M, Riaz S, Naseem S (2019) Mesoporous anatase based opto-chemical sensor. Mater Sci Semiconductor Process 100:236–244

    Article  CAS  Google Scholar 

  18. Wu S, Cheng W, Qiu Y, Li Z, Shuang S, Dong C (2010) Fiber optic pH sensor based on mode-filtered light detection. Sens Actuators B 144:255–259

    Article  CAS  Google Scholar 

  19. Ganesh AB, Radhakrishnan TK (2007) Fiber-optic sensors for the estimation of pH within natural biofilms on metals. Sens Actuators B: Chem 123:1107–1112

    Article  CAS  Google Scholar 

  20. Li W, Cheng H, Xia M, Yang KC (2013) An experimental study of pH optical sensor using a section of no-core fiber. Sens Actuators A: Phys 199:260–264

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by a Fundamental Research Grant Scheme by Malaysia Ministry of Higher Education with a reference code of FRGS/1/2019/STG02/UTM/02/7 or a cost center number of R.J130000.7854.5F191.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shumaila Islam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, S., Aziz, M.S., Bakhtiar, H. et al. Thermally stable and fast responsive mesoporous cresol red functionalized silica and titania nanomatrices: fiber optic pH sensors. J Sol-Gel Sci Technol 99, 497–511 (2021). https://doi.org/10.1007/s10971-021-05604-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05604-z

Keywords

Navigation