Skip to main content
Log in

Structural and photophysical characterization of highly luminescent organosilicate xerogel doped with Ir(III) complex

  • Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In the search for appropriate host matrices for highly luminescent molecular guest species, an organo-silica monolithic xerogel prepared by the hydrolysis and co-condensation reactions of 3-glycidoxypropyltrimethoxysilane (GPTS) and tetraethylorthosilicate (TEOS) is proposed. Such alkoxides allowed the development of hybrid silica monoliths with a cross-linked three-dimensional structure, in which the silica domains are strictly interconnected with the polymeric network. Highly luminescent monoliths were prepared from the immobilization of a blue-green emissive Ir(III) phosphor in the host matrix, with improved luminescent properties attributed to the greater rigidity of the medium and less diffusion of oxygen within the matrix. The structure of the hybrid material was elucidated by high-resolution solid-state NMR, confirming that the final structure of the developed silica matrix is very similar for both Ir(III)-doped and undoped xerogels. Altogether, the experimental strategy used in this work stands as an advance in the design of photo-functional materials with substantial potential for optical and photonic applications.

Highlights

  • Highly luminescent GPTS:TEOS-derived organosilicate monolithic xerogel is presented.

  • Structural description of the matrix using high-resolution solid-state NMR techniques.

  • Improved luminescent properties due to the rigid media and lower diffusion of O2.

  • Versatile hybrid host system promising for optical and luminescent applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pagliaro M (2009) Silica-Based Materials for Advanced Chemical Applications. The Royal Society of Chemistry, Cambridge CB4 0WF, UK, p 192. ISBN 978-1847558985.

  2. Ciriminna R, Fidalgo A, Pandarus V et al. (2013) The sol-gel route to advanced silica-based materials and recent applications. Chem Rev 113:6592–6620. https://doi.org/10.1021/cr300399c

    Article  CAS  Google Scholar 

  3. Schmidt H (2006) Considerations about the sol-gel process: from the classical sol-gel route to advanced chemical nanotechnologies. J Sol-Gel Sci Technol 40:115–130. https://doi.org/10.1007/s10971-006-9322-6

    Article  CAS  Google Scholar 

  4. Sanchez C, Belleville P, Popall M, Nicole L (2011) Hybrid materials themed issue Cluster-based inorganic-organic hybrid materialsw. Chem Soc Rev 40:696–753. https://doi.org/10.1039/c0cs00136h

    Article  CAS  Google Scholar 

  5. Wencel D, Barczak M, Borowski P, McDonagh C (2012) The development and characterisation of novel hybrid sol-gel-derived films for optical pH sensing. J Mater Chem 22:11720–11729. https://doi.org/10.1039/c2jm31240a

    Article  CAS  Google Scholar 

  6. Schottner G (2001) Hybrid sol-gel-derived polymers: applications of multifunctional materials. Chem Mater 13:3422–3435. https://doi.org/10.1021/cm011060m

    Article  CAS  Google Scholar 

  7. Barczak M, Mcdonagh C, Wencel D (2016) Micro- and nanostructured sol-gel-based materials for optical chemical sensing (2005 – 2015). Microchim Acta 183:2085–2109. https://doi.org/10.1007/s00604-016-1863-y

    Article  CAS  Google Scholar 

  8. Zanoni KPS, Ravaro LP, De Camargo ASS (2018) Host-guest luminescent materials based on highly emissive species loaded into versatile sol-gel hosts. Dalt Trans 47:12813–12826

    Article  CAS  Google Scholar 

  9. Lukowiak A, Strek W (2009) Sensing abilities of materials prepared by sol-gel technology. J Sol-Gel Sci Technol 50:201–215. https://doi.org/10.1007/s10971-009-1952-z

    Article  CAS  Google Scholar 

  10. Awano CM, De Vicente FS, Donatti DA, Vollet DR (2012) Structure and growth kinetics of 3-glycidoxypropyltrimethoxysilane-derived organic/silica hybrids at different temperatures. J Phys Chem C 116:24274–24280. https://doi.org/10.1021/jp305222z

    Article  CAS  Google Scholar 

  11. Vollet DR, Barreiro LA, Awano CM et al. (2017) Rod-like particles growing in sol – gel processing of 1: 1 molar mixtures of 3-glycidoxypropyltrimeth- oxysilane and tetraethoxysilane research papers. J Appl Crystallogr 50:489–497. https://doi.org/10.1107/S1600576717002357

    Article  CAS  Google Scholar 

  12. Alencar LDS, Pilla V, Andrade AA et al. (2014) High fluorescence quantum efficiency of CdSe/ZnS quantum dots embedded in GPTS/TEOS-derived organic/silica hybrid colloids. Chem Phys Lett 599:63–67. https://doi.org/10.1016/j.cplett.2014.03.016

    Article  CAS  Google Scholar 

  13. Ferreira PHD, Otuka AJG, Barbano EC et al. (2015) Femtosecond laser fabrication of waveguides in Rhodamine B-doped GPTS / TEOS-derived organic / silica monolithic xerogel. Opt Mater (Amst) 47:310–314. https://doi.org/10.1016/j.optmat.2015.05.047

    Article  CAS  Google Scholar 

  14. Abegão LMG, Manoel DS, Otuka AJG et al. (2017) Random laser emission from a Rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel. Laser Phys Lett 14:0–6. https://doi.org/10.1088/1612-202X/aa699b

    Article  Google Scholar 

  15. de Vicente FS, Freddi P, Otuka AJG et al. (2018) Photoluminescence tuning and energy transfer process from Tb3+ to Eu3+ in GPTMS/TEOS–derived organic/silica hybrid films. J Lumin 197:370–375. https://doi.org/10.1016/j.jlumin.2017.12.048

    Article  CAS  Google Scholar 

  16. Evans RC, Douglas P, Winscom CJ (2006) Coordination complexes exhibiting room-temperature phosphorescence: evaluation of their suitability as triplet emitters in organic light emitting diodes. Coord Chem Rev 250:2093–2126. https://doi.org/10.1016/j.ccr.2006.02.007

    Article  CAS  Google Scholar 

  17. Kalyanasundaram K, Gra ̈tzel M (1998) Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Commun Chem Rev 177:347–414. https://doi.org/10.1016/S0010-8545(98)00189-1

    Article  CAS  Google Scholar 

  18. You Y, Park SY (2008) Phosphorescent iridium(iii) complexes: toward high phosphorescence quantum efficiency through ligand control. J Chem Soc Dalt Trans 9226:1267–1282. https://doi.org/10.1039/b812281d

    Article  CAS  Google Scholar 

  19. Zanoni KPS, Ito A, Grüner M et al. (2018) Photophysical dynamics of the efficient emission and photosensitization of [Ir(: Pqi)2(NN)]+ complexes. Dalt Trans 47:1179–1188. https://doi.org/10.1039/c7dt03930a

    Article  CAS  Google Scholar 

  20. Zanoni KPS, Coppo RL, Amaral RC, Murakami Iha NY (2015) Ir(III) complexes designed for light-emitting devices: beyond the luminescence color array. Dalt Trans 44:14559–14573. https://doi.org/10.1039/c5dt01644d

    Article  CAS  Google Scholar 

  21. Smith ARG, Burn PL, Powell BJ (2011) Spin-orbit coupling in phosphorescent iridium(III) complexes. ChemPhysChem 12:2429–2438. https://doi.org/10.1002/cphc.201100397

    Article  CAS  Google Scholar 

  22. Flamigni L, Barbieri A, Sabatini C et al. (2007) Photochemistry and Photophysics of Coordination Compounds: Iridium. In: Photochemistry and Photophysics of Coordination Compounds. Topics in Current Chemistry, 281. Springer, Berlin, Heidelberg. p 143–203. https://doi.org/10.1007/128_2007_131

  23. Yersin H, Rausch AF, R Czerwieniec TH and TF (2011) Charge-Transfer Excited States in Phosphorescent Organo-Transition Metal Compounds: a Difficult Case for Time Dependent Density Functional Theory? Coord Chem Rev 255:2622–2652. https://doi.org/10.1039/C5RA12962A

    Article  CAS  Google Scholar 

  24. Zanoni KPS, Vilela RRC, Silva IDA et al. (2019) Photophysical Properties of Ir(III) Complexes Immobilized in MCM-41 via Templated Synthesis. Inorg Chem 58:4962–4971. https://doi.org/10.1021/acs.inorgchem.8b03633

    Article  CAS  Google Scholar 

  25. Grüner MC, Zanoni KPS, Borgognoni CF et al. (2018) Reaching Biocompatibility with Nanoclays: eliminating the Cytotoxicity of Ir(III) Complexes. ACS Appl Mater Interfac 10:26830–26834. https://doi.org/10.1021/acsami.8b10842

    Article  CAS  Google Scholar 

  26. Zanoni KPS, Kariyazaki BK, Ito A et al. (2014) Blue-green iridium(III) emitter and comprehensive photophysical elucidation of heteroleptic cyclometalated iridium(III) complexes. Inorg Chem 53:4089–4099. https://doi.org/10.1021/ic500070s

    Article  CAS  Google Scholar 

  27. Jaeger C, Hemmann F (2014) EASY: a simple tool for simultaneously removing background, deadtime and acoustic ringing in quantitative NMR spectroscopy - Part I: Basic principle and applications. Solid State Nucl Magn Reson 57–58:22–28. https://doi.org/10.1016/j.ssnmr.2013.11.002

    Article  CAS  Google Scholar 

  28. Bennett AE, Rienstra CM, Auger M et al. (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103:6951–6958. https://doi.org/10.1063/1.470372

    Article  CAS  Google Scholar 

  29. Kimura H, Nakamura K, Eguchi A et al. (1998) Structural study of α-amino-acid crystals by 1H CRAMPS NMR spectroscopy. J Mol Struct 447:247–255. https://doi.org/10.1016/S0022-2860(98)00329-9

    Article  CAS  Google Scholar 

  30. Potrzebowski MJ, Tekely P, Dusausoy Y (1998) Comment to 13C-NMR studies of α and γ polymorphs of glycine. Solid State Nucl Magn Reson 11:253–257. https://doi.org/10.1016/S0926-2040(98)00028-9

    Article  CAS  Google Scholar 

  31. Baccile N, Laurent G, Bonhomme C et al. (2007) Solid-state NMR characterization of the surfactant-silica interface in templated silicas: acidic versus basic conditions. Chem Mater 19:1343–1354. https://doi.org/10.1021/cm062545j

    Article  CAS  Google Scholar 

  32. Christiansen SC, Hedin N, Epping JD et al. (2006) Sensitivity considerations in polarization transfer and filtering using dipole-dipole couplings: Implications for biomineral systems. Solid State Nucl Magn Reson 29:170–182. https://doi.org/10.1016/j.ssnmr.2005.10.010

    Article  CAS  Google Scholar 

  33. Wiench JW, Bronnimann CE, Lin VSY, Pruski M (2007) Chemical shift correlation NMR spectroscopy with indirect detection in fast rotating solids: Studies of organically functionalized mesoporous silicas. J Am Chem Soc 129:12076–12077. https://doi.org/10.1021/ja074746+

    Article  CAS  Google Scholar 

  34. Massiot D, Dion P, Alcover JF, Bergaya F (1995) 27Al and 29Si MAS NMR Study of Kaolinite Thermal Decomposition by Controlled Rate Thermal Analysis. J Am Ceram Soc 78:2940–2944

    Article  CAS  Google Scholar 

  35. Launer PJ (2013) Infrared analysis of organosilicon compounds: spectra-structure correlations. In: Arkles B, Larson GL (eds) Silicon Compounds: Silanes & Silicones, 3rd edn. Gelest Inc., Morrisville PA, p 175–178

  36. Fontinha IR, Salta MM, Zheludkevich ML, Ferreira MGS (2013) EIS Study of Amine Cured Epoxy-silica-zirconia Sol-gel Coatings for Corrosion Protection of the Aluminium Alloy EN AW 6063. Port Electrochim Acta 31:307–319. https://doi.org/10.4152/pea.201306307

    Article  CAS  Google Scholar 

  37. Chan Z, Ai’mei L, Xiao Z et al. (2007) Microstructures and properties of ORMOSIL comprising methyl, vinyl, and γ-glycidoxypropyl-substitued silica. Opt Mater (Amst) 29:1543–1547. https://doi.org/10.1016/j.optmat.2006.08.014

    Article  CAS  Google Scholar 

  38. Aujara KM, Chieng BW, Ibrahim NA et al. (2019) Gamma-irradiation induced functionalization of graphene oxide with organosilanes. Int J Mol Sci 20. https://doi.org/10.3390/ijms20081910

  39. Shukla DK, Kasisomayajula SV, Parameswaran V (2008) Epoxy composites using functionalized alumina platelets as reinforcements. Compos Sci Technol 68:3055–3063. https://doi.org/10.1016/j.compscitech.2008.06.025

    Article  CAS  Google Scholar 

  40. Šapić IM, Bistričić L, Volovšek V et al. (2009) DFT study of molecular structure and vibrations of 3-glycidoxypropyltrimethoxysilane. Spectrochim Acta - Part A Mol Biomol Spectrosc 72:833–840. https://doi.org/10.1016/j.saa.2008.11.032

    Article  CAS  Google Scholar 

  41. Šapic̈ IM, Bistričic̈ L, Volovšek V, Dananic̈ V (2014) Vibrational analysis of 3-glycidoxypropyltrimethoxysilane polymer. Macromol Symp 339:122–129. https://doi.org/10.1002/masy.201300145

    Article  CAS  Google Scholar 

  42. Posset U, Lankers M, Kiefer W et al. (1993) Polarized raman spectra from some sol-gel precursors and micro-raman study of one selected copolymer. Appl Spectrosc 47:1600–1603. https://doi.org/10.1366/0003702934334787

    Article  CAS  Google Scholar 

  43. Riegel B, Blittersdorf S, Kiefer W et al. (1998) Kinetic investigations of hydrolysis and condensation of the glycidoxypropyltrimethoxysilane/aminopropyltriethoxy-silane system by means of FT-Raman spectroscopy I. J Non Cryst Solids 226:76–84. https://doi.org/10.1016/S0022-3093(97)00487-0

    Article  CAS  Google Scholar 

  44. Engelhardt G, Michel D (1987) High Resolution Solid State NMR of Silicates and Zeolites. John Wiley & Sons, Ltd, New York, USA

  45. Templin M, Wiesner U, Spiesss HW (1997) Multinuclear solid-state-NMR studies of hybrid organic-inorganic materials. Adv Mater 9:814–817. https://doi.org/10.1002/adma.19970091011

    Article  CAS  Google Scholar 

  46. de Buyl F, Kretschmer A (2008) Understanding hydrolysis and condensation kinetics of γ-glycidoxypropyltrimethoxysilane. J Adhes 84:125–142. https://doi.org/10.1080/00218460801952809

    Article  CAS  Google Scholar 

  47. Innocenzi P, Figus C, Kidchob T et al. (2009) Sol-gel reactions of 3-glycidoxypropyltrimethoxysilane in a highly basic aqueous solution. Dalt Trans 9146–9152. https://doi.org/10.1039/b905830c

  48. Babij NR, McCusker EO, Whiteker GT et al. (2016) NMR Chemical Shifts of Trace Impurities: industrially Preferred Solvents Used in Process and Green Chemistry. Org Process Res Dev 20:661–667. https://doi.org/10.1021/acs.oprd.5b00417

    Article  CAS  Google Scholar 

  49. Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J Org Chem 62:7512–7515. https://doi.org/10.1021/jo971176v

  50. Buntkowsky G, Breitzke H, Adamczyk A et al. (2007) Structural and dynamical properties of guest molecules confined in mesoporous silica materials revealed by NMR. Phys Chem Chem Phys 9:4843. https://doi.org/10.1039/b707322d

    Article  CAS  Google Scholar 

  51. Marin V, Holder E, Hoogenboom R et al. (2006) Light-emitting iridium(III) and ruthenium(II) polypyridyl complexes containing quadruple hydrogen-bonding moieties. https://doi.org/10.1039/b513957k

  52. Zanoni KPS, Murakami Iha NY (2016) Sky-blue OLED through PVK:[Ir(Fppy)2(Mepic)] active layer. Synth Met 222:393–396. https://doi.org/10.1016/j.synthmet.2016.11.006

    Article  CAS  Google Scholar 

  53. Moore SA, Davies DL, Karim MM et al. (2013) Photophysical behaviour of cyclometalated iridium(iii) complexes with phosphino(terthiophene) ligands. Dalt Trans 42:12354–12363. https://doi.org/10.1039/c3dt51320c

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) Finance Code 001, and supported by the Center for Research, Technology and Education in Vitreous Materials (CeRTEV), Project 2013/07793-6, funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). MO Jr acknowledges the National Council for Scientific and Technological (CNPq, grant n° 311069/2020-7). FSdeV acknowledges FAPESP (grant n° 2011/18149-5) and CNPq (grants n° 427220/2018-1 and 444810/2014-5). Special thanks are given to Professor Paulo Sérgio Pizani for assistance in Raman Spectroscopy and Me. Germán Darío Gómez Higuita for his assistance in Fourier Transformed Infrared Spectroscopy (FTIR).

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) Finance Code 001, and supported by the Center for Research, Technology and Education in Vitreous Materials (CeRTEV), Project 2013/07793-6, funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raquel R. C. Vilela or Andrea S. S. de Camargo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilela, R.R.C., Zanoni, K.P.S., de Oliveira, M. et al. Structural and photophysical characterization of highly luminescent organosilicate xerogel doped with Ir(III) complex. J Sol-Gel Sci Technol 102, 236–248 (2022). https://doi.org/10.1007/s10971-021-05593-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05593-z

Keywords

Navigation