Skip to main content
Log in

A facile approach to the synthesis of Er3+–Yb3+–Mo6+ co-doped TiO2/Yb2Ti2O7 electrospun nanofibers and high thermal sensitivity

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Er3+–Yb3+–Mo6+ co-doped TiO2/Yb2Ti2O7 up-conversion luminescent nanofibers have been successfully synthesized using the electrospinning technology followed by thermolysis. The effects of the precursor ratio and annealing process on up-conversion luminescent character were investigated. The phase of TiO2 was determined to be either anatase or rutile. And the cubic Yb2Ti2O7 in Er3+–Yb3+–Mo6+ co-doped TiO2 phosphor was confirmed. After annealing at high temperature, the up-conversion luminescent intensity of the studied system increased obviously. The fluorescence intensity ratio (FIR) used to be made on the basis of green up-conversion emissions. It was studied as a function of temperature. The maximum rate of sensitivity was ~0.01 K−1 in the range of 300–600 K. The results indicate that Er3+–Yb3+–Mo6+ co-doped TiO2/Yb2Ti2O7 phosphor is a brand-new material that meets the requirement of the optical temperature sensing.

Highlights

  • Er3+–Yb3+–Mo6+ co-doped TiO2/Yb2Ti2O7 nanofibers have been synthesized by electrospinning technique and the followed thermolysis. The morphology of nanofibers was significantly changed after annealing at high temperature.

  • The green up-conversion emission of Er3+ was enhanced by a high excited state energy transfer (HESET) with Yb3+–MoO42− dimer in Er3+–Yb3+–Mo6+ TiO2/Yb2Ti2O7 nanofibers.

  • The maximum sensitivity of Er3+–Yb3+–Mo6+ co-doped TiO2/Yb2Ti2O7 nanofibers was determined to be 0.01039 K1 at 397 K, was better than other Er3+–Yb3+–Mo6+ co-doped materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang XD, Wolfbeis OS, Meier RJ (2013) Luminescent probes and sensors for temperature. Chem Soc Rev 42:7834–7869

    Article  CAS  Google Scholar 

  2. Wang X, Liu Q, Bu Y, Liu C, Liu T, Yan X (2015) Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv 5:86219–86236

    Article  CAS  Google Scholar 

  3. Zhou Y, Zhang D, Zeng J, Gan N, Jing C (2018) A luminescent Lanthanide-free MOF nanohybrid for highly sensitive ratiometric temperature sensing in physiological range. Talanta 181:410–415

    Article  CAS  Google Scholar 

  4. Nguyen V, Yan L, Xu H, Yue M (2018) One-step synthesis of multi-emission carbon nanodots for ratiometric temperature sensing. Appl Surf Sci 427:1118–1123

    Article  CAS  Google Scholar 

  5. Cantelar E, Cussó F (2000) Analytical solution of the transfer rate equations in LiNbO3:Er3+/Yb3+. J Phys: Condens Matter 12:521

    CAS  Google Scholar 

  6. Dwivedi Y, Mishra K, Rai SB (2013) Synthesis of bright multicolor down and upconversion emitting Y2Te4O11:Er:Yb nanocrystals. J Alloy Compd 572:90–96

    Article  CAS  Google Scholar 

  7. Cao BS, He YY, Feng ZQ, Song M, Dong B (2011) Crystalline-structure-dependent green and red upconversion emissions of Er3+-Yb3+-Li+ codoped TiO2. Opt Commun 284:3311–3314

    Article  CAS  Google Scholar 

  8. Feng Z, He Y, Bai H, Cao B (2011) Green up-conversion emissions and optical thermometry of Er3+ doped borosilicate glass. Opt Eng 50:049001

    Article  Google Scholar 

  9. Dong B, Liu DP, Wang XJ, Yang T, Miao SM, Li CR (2007) Optical thermometry through infrared excited green upconversion emissions in Er3+-Yb3+ codoped Al2O3. Appl Phys Lett 90:181117

    Article  Google Scholar 

  10. Li ZP, Dong B, He YY, Cao BS, Feng ZQ (2012) Selective enhancement of green upconversion emissions of Er3+:Yb3Al5O12 nanocrystals by high excited state energy transfer with Yb3+-Mn2+ dimer sensitizing. J Lumin 132:1646–1648

    Article  CAS  Google Scholar 

  11. Cao BS, He YY, Feng ZQ, Li YS, Dong B (2011) Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo:Yb2Ti2O7 nanophosphor. Sens Actuators B 159:8–11

    Article  CAS  Google Scholar 

  12. He YY, Liu XL, Cao BS, Feng ZQ, Dong B (2013) A general approach for selective enhancement of green upconversion emissions in Er3+doped oxides by Yb3+-MoO42- dimer sensitizing. J Sol-Gel Sci Technol 66:312–316

    Article  CAS  Google Scholar 

  13. Cao BS, Wu JL, Wang YY, He YY, Feng ZQ, Dong B, Rino L (2015) Multiple temperature effects on up-conversion fluorescences of Er3+-Yb3+-Mo6+ codoped TiO2 and high thermal sensitivity. AIP Adv 5:087136

    Article  Google Scholar 

  14. Dong B, Cao BS, Feng ZQ, Wang XJ, He YY (2012) Optical temperature sensing through extraordinary enhancement of green up-conversion emissions for Er-Yb-Mo:Al2O3. Sens Actuators B 165:34–37

    Article  CAS  Google Scholar 

  15. Zheng Y, You H, Liu K, Song Y, Jia G, Huang Y, Yang M, Zhang L, Ning G (2011) Facile selective synthesis and luminescence behavior of hierarchical NaY(WO4)2:Eu3+ and Y6WO12:Eu3+. CrystEngComm 13:3001–3007

    Article  CAS  Google Scholar 

  16. Lei F, Yan B, Chen HH, Zhao JT (2009) Surfactant-assisted hydrothermal synthesis of Eu3+-doped white light hydroxyl sodium yttrium tungstate microspheres and their conversion to NaY(WO4)2. Inorg Chem 48:7576–7584

    Article  CAS  Google Scholar 

  17. Cong Y, Liu D, Yu N, Xiao Y, Yang Q, Fu Y (2014) Strong green upconversion emission from Er3+-Yb3+-Mo6+ tridoped ZrO2. Mater Chem Phys 144:440–443

    Article  CAS  Google Scholar 

  18. Anjana R, Subha PP, Markose KK, Jayaraj MK (2017) Enhanced green upconversion luminescence in ZnO:Er3+,Yb3+ on Mo6+ co-doping for temperature sensor application. Methods Appl Fluoresc 6:1

    Article  CAS  Google Scholar 

  19. Wenbo P, Tao P (2018) Reliable temperature sensing based on intense green upconversion emissions of Y2Mo4O15:Yb3+,Er3+ under 980 nm excitation. Phys B 550:145–153

    Article  Google Scholar 

  20. Xiao Y, Cong Y, Yang Q, Zhang ZH, Liu PZ (2013) Upconversion emission from Er3+-Yb3+-Mo6+ Co-Doped ZrO2-Al2O3 composites. Spectrosc Spectr Anal 33:2913–2916

    CAS  Google Scholar 

  21. Deitzel JM, Kleinmeyer JD, Harris DEA, Tan NCB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272

    Article  CAS  Google Scholar 

  22. Greiner A, Wendorff JH (2010) Electrospinning: a fascinating method for the preparation of ultrathin fibers Angew Chem 46:5670–5703

    Article  Google Scholar 

  23. Hou ZY, Yang PP, Li CX, Wang LL, Lian HZ, Quan ZW, Lin J (2008) Preparation and luminescence properties of YVO4:Ln and Y(V, P)O4:Ln (Ln = Eu3+, Sm3+, Dy3+) nanofibers and microbelts by sol-gel/electrospinning process. Chem Mater 20:6686–6696

    Article  CAS  Google Scholar 

  24. Ma W, Yu W, Dong X, Wang J, Liu G (2014) Electrospinning preparation and up-conversion luminescence properties of LaOBr:Er3+ nanofibers and nanoribbons. Chem Eng J 244:531–539

    Article  CAS  Google Scholar 

  25. Wei Y, Zhong L, Li D, Ma Q, Dong X (2019) A novel strategy offabricating GdOF:Er3+ nanofibers possessing upconversion luminescence and paramagnetic properties: the combination of electrospinning with fluoro-oxidation technique. Opt Mater 95:109261

    Article  CAS  Google Scholar 

  26. Wu Y, Lin S, Liu J, Yang J, Chen K (2017) Efficient up-conversion red emission from TiO2:Yb,Er nanocrystals. Opt Express 25:22648

    Article  CAS  Google Scholar 

  27. Youljung K (2020) Aerosol synthesis of TiO2:Er3+/Yb3+ submicron-sized spherical particles and upconversion optimization for application as anti-counterfeiting materials. RSC Adv 10:16323

    Article  Google Scholar 

  28. Nonaka T, Imai T, Ban T, Yamamoto SI (2020) Nanoscale mapping of ZnO–TiO2 up-conversion phosphor containing Yb3+ and Er3+. Mater Res Express 7:055021

    Article  CAS  Google Scholar 

  29. Dong B, Cao B, He Y, Liu Z, Li Z (2012) Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Adv Mater 24:1987–1993

    Article  CAS  Google Scholar 

  30. Gerner P, Reinhard C, Güdel HU (2004) Cooperative near-IR to visible photon upconversion in Yb3+-doped MnCl2 and MnBr2: Comparison with a series of Yb3+-doped Mn2+ halides. Chem Nat Compd 10:4735–4741

    CAS  Google Scholar 

  31. Reinhard C, Valiente R, Güdel HU (2002) Exchange-induced upconversion in Rb2 MnCl4:Yb3+. J Phys Chem B 106:10051–10057

    Article  CAS  Google Scholar 

  32. Pandey A, Rai VK, Kumar V, Kumar V, Swart HC (2015) Upconversion based temperature sensing ability of Er3+-Yb3+ codoped SrWO4: an optical heating phosphor. Sens Actuators B 209:352–358

    Article  CAS  Google Scholar 

  33. Wade SA, Collins SF, Baxter GW (2003) Fluorescence intensity ratio technique for optical fiber point temperature sensing. J Appl Phys 94:4743

    Article  CAS  Google Scholar 

  34. Rai VK (2007) Temperature sensors and optical sensors. Appl Phys B 88:297–303

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by National Natural Science Foundation of China (Grant Nos. 11904046, 51872034, 51722205, 11974069, 52072058), Liaoning Province Science and Technology Research Plan under Grant No. 2020JH2/10100012, Liaoning Revitalization Talents Program (Grant No. XLYC1807173), the Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission (Grant No. NERE201905), Doctor Start-up Fund of Liaoning (Grant No. 20170520155), and Dalian Technology Innovation Fund under Grant No. 2020JJ26GX043.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Dong or Zhihua Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Ma, K., Tao, H. et al. A facile approach to the synthesis of Er3+–Yb3+–Mo6+ co-doped TiO2/Yb2Ti2O7 electrospun nanofibers and high thermal sensitivity. J Sol-Gel Sci Technol 99, 557–564 (2021). https://doi.org/10.1007/s10971-021-05598-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05598-8

Keywords

Navigation