Skip to main content
Log in

Tungsten disulfide (WS2) nanosheets: synthesis, characterization, adsorption studies and application for remediation of groundwater samples with high prevalence of uranium from Faridkot district of SW-Punjab

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

High prevalence of uranium in groundwater may pose radio and chemical toxicity and causes severe health hazards which require efficient methods for its extraction. In the present study, crystalline WS2 nanosheets were synthesized, characterized and investigated systematically to obtain optimized adsorption parameters: pH (6.0), adsorbent dose (0.6 g/L) and time (30 min). The adsorption process was spontaneous and endothermic with maximum adsorption capacity of 22.35 mg/g. WS2 nanosheets were successfully applied as an efficient adsorbent for treatment of uranium prevalent groundwater samples from Faridkot district of SW-Punjab, India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1.
Fig. 7

Similar content being viewed by others

References

  1. Sharma T, Bajwa BS, Kaur I (2021) Contamination of groundwater by potentially toxic elements in groundwater and potential risk to groundwater users in the Bathinda and Faridkot districts of Punjab, India. Environ Earth Sci 80:1–15. https://doi.org/10.1007/s12665-021-09560-3

    Article  CAS  Google Scholar 

  2. Van Berk W, Fu Y (2017) Redox roll-front mobilization of geogenic uranium by nitrate input into aquifers: risks for groundwater resources. Environ Sci Technol 51:337–345. https://doi.org/10.1021/acs.est.6b01569

    Article  CAS  PubMed  Google Scholar 

  3. Coyte RM, Jain RC, Srivastava SK et al (2018) Large-scale uranium contamination of groundwater resources in India. Environ Sci Technol Lett 5:341–347. https://doi.org/10.1021/acs.estlett.8b00215

    Article  CAS  Google Scholar 

  4. Bajwa BS, Kumar S, Singh S et al (2017) Uranium and other heavy toxic elements distribution in the drinking water samples of SW-Punjab, India. J Radiat Res Appl Sci 10:13–19. https://doi.org/10.1016/j.jrras.2015.01.002

    Article  CAS  Google Scholar 

  5. Us-Epa (2011) Edition of the drinking water standards and health advisories. 1–18

  6. Graham N (1999) Guidelines for drinking-water quality, 4th Ed. Who 1:183. https://doi.org/10.1016/S1462-0758(00)00006-6

  7. Singh S, Bajwa BS, Kaur I (2021) (Zn/Co)-zeolitic imidazolate frameworks: room temperature synthesis and application as promising U(VI) scavengers — A comparative study. J Ind Eng Chem 93:351–360. https://doi.org/10.1016/j.jiec.2020.10.012

    Article  CAS  Google Scholar 

  8. Nolan J, Weber KA (2015) Natural uranium contamination in major U.S. aquifers linked to nitrate. Environ Sci Technol Lett 2:215–220. https://doi.org/10.1021/acs.estlett.5b00174

    Article  CAS  Google Scholar 

  9. Pregler A, Surbeck H, Eikenberg J et al (2019) Increased uranium concentrations in ground and surface waters of the Swiss Plateau: a result of uranium accumulation and leaching in the Molasse basin and (ancient) wetlands? J Environ Radioact 208–209:106026. https://doi.org/10.1016/j.jenvrad.2019.106026

    Article  CAS  PubMed  Google Scholar 

  10. Sharma N, Singh J (2016) Radiological and chemical risk assessment due to high uranium contents observed in the ground waters of Mansa District (Malwa Region) of Punjab State, India: an area of high cancer incidence. Expo Heal 8:513–525. https://doi.org/10.1007/s12403-016-0215-9

    Article  CAS  Google Scholar 

  11. Cho BW, Choo CO (2019) Geochemical behavior of uranium and radon in groundwater of Jurassic granite area, Icheon Middle Korea. Water (Switzerland). https://doi.org/10.3390/w11061278

    Article  PubMed Central  Google Scholar 

  12. Landstetter C, Katzlberger C (2009) Determination of 3H, 226Ra, 222Rn and 238U in Austrian ground- and drinking water. J Radioanal Nucl Chem 282:467–471. https://doi.org/10.1007/s10967-009-0178-4

    Article  CAS  Google Scholar 

  13. Godoy JM, Ferreira PR, de Souza EM et al (2019) High uranium concentrations in the groundwater of the Rio de Janeiro State, Brazil, mountainous region. J Braz Chem Soc 30:224–233. https://doi.org/10.21577/0103-5053.20180171

    Article  CAS  Google Scholar 

  14. Kurttio P, Auvinen A, Salonen L et al (2002) Renal effects of uranium in drinking water. Environ Health Perspect 110:337–342. https://doi.org/10.1289/ehp.02110337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reinoso-Maset E, Ly J (2016) Study of uranium(VI) and radium(II) sorption at trace level on kaolinite using a multisite ion exchange model. J Environ Radioact 157:136–148. https://doi.org/10.1016/j.jenvrad.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  16. Nilchi A, Shariati Dehaghan T, Rasouli Garmarodi S (2013) Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles. Desalination 321:67–71. https://doi.org/10.1016/j.desal.2012.06.022

    Article  CAS  Google Scholar 

  17. Maksin DD, Nastasović AB, Milutinović-Nikolić AD et al (2012) Equilibrium and kinetics study on hexavalent chromium adsorption onto diethylene triamine grafted glycidyl methacrylate based copolymers. J Hazard Mater 209–210:99–110. https://doi.org/10.1016/j.jhazmat.2011.12.079

    Article  CAS  PubMed  Google Scholar 

  18. Raff O, Wilken RD (1999) Removal of dissolved uranium by nanofiltration. Desalination 122:147–150. https://doi.org/10.1016/S0011-9164(99)00035-1

    Article  CAS  Google Scholar 

  19. Abou El-Reash YG, Abdelghany AM, Elrazak AA (2016) Removal and separation of Cu(II) from aqueous solutions using nano-silver chitosan/polyacrylamide membranes. Int J Biol Macromol 86:789–798. https://doi.org/10.1016/j.ijbiomac.2016.01.101

    Article  CAS  PubMed  Google Scholar 

  20. Luo BC, Yuan LY, Chai ZF et al (2016) U(VI) capture from aqueous solution by highly porous and stable MOFs: UiO-66 and its amine derivative. J Radioanal Nucl Chem 307:269–276. https://doi.org/10.1007/s10967-015-4108-3

    Article  CAS  Google Scholar 

  21. Wang Z, Lee SW, Catalano JG et al (2013) Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling. Environ Sci Technol 47:850–858. https://doi.org/10.1021/es304454g

    Article  CAS  PubMed  Google Scholar 

  22. Li Z, Chen F, Yuan L et al (2012) Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem Eng J 210:539–546. https://doi.org/10.1016/j.cej.2012.09.030

    Article  CAS  Google Scholar 

  23. Manos MJ, Kanatzidis MG (2012) Layered metal sulfides capture uranium from seawater. J Am Chem Soc 134:16441–16446. https://doi.org/10.1021/ja308028n

    Article  CAS  PubMed  Google Scholar 

  24. Dou W, Yang W, Zhao X, Pan Q (2019) Hollow cobalt sulfide for highly efficient uranium adsorption from aqueous solutions. Inorg Chem Front 6:3230–3236. https://doi.org/10.1039/c9qi00737g

    Article  CAS  Google Scholar 

  25. Han R, Zou W, Wang Y, Zhu L (2007) Removal of uranium ( VI ) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. J Environ Radioact. https://doi.org/10.1016/j.jenvrad.2006.12.003

    Article  PubMed  Google Scholar 

  26. Fasfous II, Dawoud JN (2012) Uranium (VI) sorption by multiwalled carbon nanotubes from aqueous solution. Appl Surf Sci 259:433–440. https://doi.org/10.1016/j.apsusc.2012.07.062

    Article  CAS  Google Scholar 

  27. Bachmaf S, Merkel BJ (2011) Sorption of uranium(VI) at the clay mineral-water interface. Environ Earth Sci 63:925–934. https://doi.org/10.1007/s12665-010-0761-6

    Article  CAS  Google Scholar 

  28. Abd El-Magied MO (2016) Sorption of uranium ions from their aqueous solution by resins containing nanomagnetite particles. J Eng (United Kingdom). https://doi.org/10.1155/2016/7214348

    Article  Google Scholar 

  29. Singh S, Kaur M, Bajwa BS, Kaur I (2021) Salicylaldehyde and 3-hydroxybenzoic acid grafted NH2-MCM-41: synthesis, characterization and application as U(VI) scavenging adsorbents using batch mode, column and membrane systems. J Mol Liq. https://doi.org/10.1016/j.molliq.2021.117061

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jiang X, Wang H, Wang Q et al (2020) Immobilizing amino-functionalized mesoporous silica into sodium alginate for efficiently removing low concentrations of uranium. J Clean Prod 247:119162. https://doi.org/10.1016/j.jclepro.2019.119162

    Article  CAS  Google Scholar 

  31. Barber PS, Kelley SP, Griggs CS et al (2014) Surface modification of ionic liquid-spun chitin fibers for the extraction of uranium from seawater: seeking the strength of chitin and the chemical functionality of chitosan. Green Chem 16:1828–1836. https://doi.org/10.1039/c4gc00092g

    Article  CAS  Google Scholar 

  32. Monier M, Elsayed NH (2014) Selective extraction of uranyl ions using ion-imprinted chelating microspheres. J Colloid Interface Sci 423:113–122. https://doi.org/10.1016/j.jcis.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  33. Omichi H, Katakai A, Sugo T, Okamoto J (1986) A new type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater. II. Effect of grafting of hydrophilic monomers. Sep Sci Technol 21:299–313. https://doi.org/10.1080/01496398608058379

    Article  CAS  Google Scholar 

  34. Grabias E, Tarasiuk B, Doega A, Majdan M (2020) New uranium(vi) and isothiouronium complexes: synthesis, crystal structure, spectroscopic characterization and a DFT study. CrystEngComm 22:5678–5689. https://doi.org/10.1039/d0ce00746c

    Article  CAS  Google Scholar 

  35. Grabias E, Gładysz-Płaska A, Książek A, Majdan M (2014) Efficient uranium immobilization on red clay with phosphates. Environ Chem Lett 12:297–301. https://doi.org/10.1007/s10311-013-0442-2

    Article  CAS  PubMed  Google Scholar 

  36. Gładysz-Płaska A, Majdan M, Tarasiuk B et al (2018) The use of halloysite functionalized with isothiouronium salts as an organic/inorganic hybrid adsorbent for uranium(VI) ions removal. J Hazard Mater 354:133–144. https://doi.org/10.1016/j.jhazmat.2018.03.057

    Article  CAS  PubMed  Google Scholar 

  37. Wang F, Liu Q, Li R et al (2016) Selective adsorption of uranium(VI) onto prismatic sulfides from aqueous solution. Colloids Surf A Physicochem Eng Asp 490:215–221. https://doi.org/10.1016/j.colsurfa.2015.11.045

    Article  CAS  Google Scholar 

  38. Clearfield A (1995) Inorganic Ion exchangers: a technology ripe for development. Ind Eng Chem Res 34:2865–2872. https://doi.org/10.1021/ie00047a040

    Article  CAS  Google Scholar 

  39. Borovinskii VA, Lyzlova EV, Ramazanov LM (2001) Sorption of Uranium on zirconium phosphate inorganic cation exchanger. Radiochemistry 43:84–86

    Article  CAS  Google Scholar 

  40. Sharma T, Bajwa BS, Kaur I (2021) Contamination of groundwater by potentially toxic elements in groundwater and potential risk to groundwater users in the Bathinda and Faridkot districts of Punjab India. Environ Earth Sci. https://doi.org/10.1007/s12665-021-09560-3

    Article  Google Scholar 

  41. Sharma T, Litoria PK, Bajwa BS, Kaur I (2021) Appraisal of groundwater quality and associated risks in Mansa district (Punjab, India). Environ Monit Assess. https://doi.org/10.1007/s10661-021-08892-8

    Article  PubMed  Google Scholar 

  42. Saini K, Singh P, Bajwa BS (2016) Comparative statistical analysis of carcinogenic and non-carcinogenic effects of uranium in groundwater samples from di ff erent regions of Punjab, India. Appl Radiat Isot 118:196–202. https://doi.org/10.1016/j.apradiso.2016.09.014

    Article  CAS  PubMed  Google Scholar 

  43. Prasad M, Kumar GA, Sahoo SK, Ramola RC (2019) Health risks associated with the exposure to uranium and heavy metals through potable groundwater in Uttarakhand state of India. J Radioanal Nucl Chem 319:13–21. https://doi.org/10.1007/s10967-018-6281-7

    Article  CAS  Google Scholar 

  44. Sharma T, Sharma A, Kaur I et al (2019) Chemosphere Uranium distribution in groundwater and assessment of age dependent radiation dose in Amritsar, Gurdaspur and Pathankot districts of Punjab, India. Chemosphere 219:607–616. https://doi.org/10.1016/j.chemosphere.2018.12.039

    Article  CAS  PubMed  Google Scholar 

  45. Sharma S, Bhagat S, Singh J et al (2018) Temperature dependent photoluminescence from WS2 nanostructures. J Mater Sci Mater Electron 29:20064–20070. https://doi.org/10.1007/s10854-018-0137-3

    Article  CAS  Google Scholar 

  46. Hazarika SJ, Mohanta D (2017) Inorganic fullerene-type WS2 nanoparticles: processing, characterization and its photocatalytic performance on malachite green. Appl Phys A Mater Sci Process 123:1–10. https://doi.org/10.1007/s00339-017-0965-7

    Article  CAS  Google Scholar 

  47. Vaziri HS, Shokuhfar A, Afghahi SSS (2020) Synthesis of WS2/CNT hybrid nanoparticles for fabrication of hybrid aluminum matrix nanocomposite. Mater Res Express. https://doi.org/10.1088/2053-1591/ab70e1

    Article  Google Scholar 

  48. Sharma S, Singh J, Bhagat S et al (2018) Size-tunable photoluminescence from WS2 nanostructures. Mater Res Express. https://doi.org/10.1088/2053-1591/aabdcd

    Article  Google Scholar 

  49. Misaelides P, Godelitsas A, Filippidis A et al (1995) Thorium and uranium uptake by natural zeolitic materials. Sci Total Environ 173–174:237–246. https://doi.org/10.1016/0048-9697(95)04748-4

    Article  Google Scholar 

  50. Tesfay Reda A, Zhang D, Lu X (2018) Rapid and selective uranium adsorption by glycine functionalized europium hydroxide. Colloids Surf A Physicochem Eng Asp 556:299–308. https://doi.org/10.1016/j.colsurfa.2018.08.039

    Article  CAS  Google Scholar 

  51. Xiao J, Jing Y, Yao Y et al (2016) Synthesis of amine-functionalized MCM-41 and its highly efficient sorption of U(VI). J Radioanal Nucl Chem 310:1001–1011. https://doi.org/10.1007/s10967-016-4875-5

    Article  CAS  Google Scholar 

  52. Gao JK, Hou LA, Zhang GH, Gu P (2015) Facile functionalized of SBA-15 via a biomimetic coating and its application in efficient removal of uranium ions from aqueous solution. J Hazard Mater 286:325–333. https://doi.org/10.1016/j.jhazmat.2014.12.061

    Article  CAS  PubMed  Google Scholar 

  53. Feng Y, Jiang H, Li S et al (2013) Metal-organic frameworks HKUST-1 for liquid-phase adsorption of uranium. Colloids Surf A Physicochem Eng Asp 431:87–92. https://doi.org/10.1016/j.colsurfa.2013.04.032

    Article  CAS  Google Scholar 

  54. Liu Y, Lan J, Zhao Y et al (2012) A high efficient sorption of U(VI) from aqueous solution using amino-functionalized SBA-15. J Radioanal Nucl Chem 292:803–810. https://doi.org/10.1007/s10967-011-1515-y

    Article  CAS  Google Scholar 

  55. Rahmati A, Ghaemi A, Samadfam M (2012) Kinetic and thermodynamic studies of uranium(VI) adsorption using Amberlite IRA-910 resin. Ann Nucl Energy 39:42–48. https://doi.org/10.1016/j.anucene.2011.09.006

    Article  CAS  Google Scholar 

  56. Kaur I, Mandiyal D, Singh BP et al (2016) Amino-functionalized mesoporous MCM-41: an efficient adsorbent for the removal of chromium (III) ions from aqueous solution. J Water Supply Res Technol—AQUA 65:480–493. https://doi.org/10.2166/aqua.2016.118

    Article  Google Scholar 

  57. Liu S (2015) Cooperative adsorption on solid surfaces. J Colloid Interface Sci 450:224–238. https://doi.org/10.1016/j.jcis.2015.03.013

    Article  CAS  PubMed  Google Scholar 

  58. Wu C, Xiong Z, Li C, Zhang J (2015) Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution. RSC Adv 5:82127–82137. https://doi.org/10.1039/C5RA15497A

    Article  CAS  Google Scholar 

  59. Dolatyari L, Yaftian MR, Rostamnia S (2016) Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J Environ Manage 169:8–17. https://doi.org/10.1016/j.jenvman.2015.12.005

    Article  CAS  PubMed  Google Scholar 

  60. Xue G, Yurun F, Li M et al (2017) Phosphoryl functionalized mesoporous silica for uranium adsorption. Appl Surf Sci 402:53–60. https://doi.org/10.1016/j.apsusc.2017.01.050

    Article  CAS  Google Scholar 

  61. Manos MJ, Kanatzidis MG (2009) Sequestration of heavy metals from water with layered metal sulfides. Chem: A Eur J 15:4779–4784. https://doi.org/10.1002/chem.200900353

    Article  CAS  Google Scholar 

  62. Li J, Wu Z, Duan Q et al (2018) Decoration of ZIF-8 on polypyrrole nanotubes for highly efficient and selective capture of U(VI). J Clean Prod 204:896–905. https://doi.org/10.1016/j.jclepro.2018.09.050

    Article  CAS  Google Scholar 

  63. Li J, Wu YN, Li Z et al (2014) Zeolitic imidazolate framework-8 with high efficiency in trace arsenate adsorption and removal from water. J Phys Chem C 118:27382–27387. https://doi.org/10.1021/jp508381m

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Ministry of Human Resources Development, Government of India under RUSA 2.0 Programme and Centre of Emerging life Sciences, Guru Nanak Dev University, Amritsar for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. S. Bajwa or Inderpreet Kaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 759 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Sharma, S., Bajwa, B.S. et al. Tungsten disulfide (WS2) nanosheets: synthesis, characterization, adsorption studies and application for remediation of groundwater samples with high prevalence of uranium from Faridkot district of SW-Punjab. J Radioanal Nucl Chem 330, 1425–1436 (2021). https://doi.org/10.1007/s10967-021-07939-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07939-x

Keywords

Navigation