Skip to main content
Log in

Preparation and characterization of ZnO/Chitosan nanocomposite for Cs(I) and Sr(II) sorption from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

1:1 ZnO/Chitosan nanocomposite (nZnOCS nanocomposite) successfully prepared by sol–gel method and used as a sorbent for Cs(I) and Sr(II). The prepared samples characterized by different analytical techniques as FTIR, SEM, TEM, XRD, particle size analyzer, TGA/DTA, and pore size distribution. Optimization of pH of the medium, contact time, initial metal ion concentration and temperature for the sorption reaction performed. The sorption reaction kinetics follows pseudo-2nd order. The monolayer capacities at 298 K are 253.81 and 116.1 mgg−1 for Cs(I) and Sr(II), respectively. The sorption process is spontaneous and endothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Al Attar L, Safia B, Ghani BA (2018) Uptake of 137Cs and 85Sr onto thermally treated forms of bentonite. J Environ Radioact 193–194:36–43

    Article  Google Scholar 

  2. Dakroury GA, Abo-Zahra SF, Hassan HS, Ali HEA (2020) Improvement of the sorption behavior of aluminum silicate composite toward 134Cs and 60Co radionuclides by non-living biomass of chlorella vulgaris. Environ Sci Pollut Res 27(17):21109–21125. https://doi.org/10.1007/s11356-020-08260-y

    Article  CAS  Google Scholar 

  3. Ma F, Li Z, Zhao H, Geng Y, Zhou W, Li Q, Zhang L (2017) Potential application of graphene oxide membranes for removal of Cs(I) and Sr(II) from high level-liquid waste. Sep Purif Technol 188:523–529

    Article  CAS  Google Scholar 

  4. Synhaeve N, Stefani J, Tourlonias E, Dublineau I, Bertho JM (2011) Biokinetics of 90Sr after chronic ingestion in a juvenile and adult mouse model. Radiat Environ Biophys 50:501–511

    Article  CAS  Google Scholar 

  5. Chegrouche S, Mellah A, Barkat M (2009) Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies. Desalination 235:306–318. https://doi.org/10.1016/j.desal.2008.01.018

    Article  CAS  Google Scholar 

  6. Ibrahim HA, Hassan HS, Mekhamer HS, Kenawy SH (2019) Diffusion and sorption of Cs+ and Sr2+ ions onto synthetic mullite powder. J Radioanal Nucl Chem 319:1–12

    Article  CAS  Google Scholar 

  7. Hu YM, Guo X, Chen C, Wang JL (2019) Algal sorbent derived from sargassum horneri for adsorption of cesium and strontium ions: equilibrium, kinetics, and mass transfer. Appl Microbiol Biotechnol 103:2833–2843

    Article  CAS  Google Scholar 

  8. Wang JL, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol 160:129–141

    Article  CAS  Google Scholar 

  9. Dakroury GA, Abo-Zahra SF, Hassan HS (2020) Utilization of olive pomace in nano MgO modification for sorption of Ni(II) and Cu(II) metal ions from aqueous solutions. Arab J Chem 13(8): 6510–6522, ISSN 1878-5352 https://doi.org/10.1016/j.arabjc.2020.06.008.

  10. Huang KS, Yang CH, Huang SL, Chen CY, Lu YY, Lin YS (2016) Recent advances in antimicrobial polymers: a mini-review. Int J Mol Sci 17(9):1578–1592

    Article  Google Scholar 

  11. Farzana MH, Meenakshi S (2015) Photocatalytic aptitude of titanium dioxide impregnated chitosan beads for the reduction of Cr(VI). Int J Biol Macromol 72:1265–1271

    Article  Google Scholar 

  12. Kandile NG, Mohamed HM, Mohamed MI (2015) New heterocycle modified chitosan adsorbent for metal ions (II) removal from aqueous systems. Int J Biol Macromol 72:110–116. https://doi.org/10.1016/j.ijbiomac.2014.07.042

    Article  CAS  PubMed  Google Scholar 

  13. Xiaodong M, Zhang Z, Dai E, Guo H (2016) Improved multi-shot diffusion imaging using GRAPPA with a compact kernel. NeuroImage 138:88–99. https://doi.org/10.1016/j.neuroimage.2016.05.079

    Article  Google Scholar 

  14. Shahzad A, Miran W, Rasool K, Nawaz M, Jang J, Le LS (2017) Heavy metals removal by EDTA-functionalized chitosan graphene oxide nanocomposites. RSC Adv 7:9764–9771. https://doi.org/10.1039/C6RA28406J

    Article  CAS  Google Scholar 

  15. Zhang F, Chen X, Wu F, Ji Y (2016) High adsorption capability and selectivity of ZnO nanoparticles for dye removal. Coll Surf A Physicochem Eng Asp 509:474–483. https://doi.org/10.1016/j.colsurfa.2016.09.059

    Article  CAS  Google Scholar 

  16. Zak AK, Abd Majid WH, Mahmuodian MR, Majid D, Yousefi R (2013) Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study. Adv Powder Technol 24(3):618–624. https://doi.org/10.1016/j.apt.2012.11.008

    Article  CAS  Google Scholar 

  17. Rahman PM, Abdul Mujeeb VM, Muraleedharan K, Thomas SK (2018) Chitosan/nano ZnO composite films: Enhanced mechanical, antimicrobial and dielectric properties. Arab J Chem 11(1):120–127, ISSN 1878-5352 https://doi.org/10.1016/j.arabjc.2016.09.008

  18. Abdelhady MM (2012) Preparation and characterization of chitosan / zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. Int J Carbohydr Chem 2012:1–6. https://doi.org/10.1155/2012/840591

    Article  CAS  Google Scholar 

  19. Al-Naamani L, Dobretsov S, Dutta J (2016) Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov Food Sci Emerg Technol 38:231–237. https://doi.org/10.1016/j.ifset.2016.10.010

    Article  CAS  Google Scholar 

  20. Zhong R, Zhong Q, Huo M, Yang B, Li H (2020) Preparation of biocompatible nano-ZnO/chitosan microspheres with multi-functions of antibacterial, UV-shielding and dye photodegradation. Int J Biol Macromol 146:939–945. https://doi.org/10.1016/j.ijbiomac.2019.09.217

    Article  CAS  PubMed  Google Scholar 

  21. Yusof NAA, Zain NM, Pauzi N (2019) Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria. Int J Biol Macromol 124:1132–1136. https://doi.org/10.1016/j.ijbiomac.2018.11.228

    Article  CAS  PubMed  Google Scholar 

  22. Saad AHA, Azzam AM, El-Wakeel ST, Mostafa BB, Abd El-lati MB (2018) Removal of toxic metal ions from wastewater using ZnO@Chitosan coreshell nanocomposite. Environ Nanotechnol Monit Manag 9:67–75. https://doi.org/10.1016/j.enmm.2017.12.004

    Article  Google Scholar 

  23. Mohan AC, Renjanadevi B (2016) Preparation of zinc oxide nanoparticles and its characterization using scanning electron microscopy (SEM) and X-Ray diffraction (XRD). Procedia Technol 24:761–766. https://doi.org/10.1016/j.protcy.2016.05.078

    Article  Google Scholar 

  24. Lin J, Wang L (2009) Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Front Environ Sci Eng China 3:320–324. https://doi.org/10.1007/s1783-009-0030-7

    Article  CAS  Google Scholar 

  25. Cheung CW, Porter JF, Mckay G (2000) Sorption kinetics for the removal of copper and zinc from effluents using bone char. Sep Purif Technol 19(1–2):55–64 http://hdl.handle.net/1783.1/24689

  26. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div, Am Soc Civ Eng 89(2):31–60

    Article  Google Scholar 

  27. Dakroury GA, Abo-Zahra ShF (2020) The use of titanium oxide/polyethylene glycol nanocomposite in sorption of 134Cs and 60Co radionuclides from aqueous solutions. J Radioanal Nucl Chem 324:1351–1364. https://doi.org/10.1007/s10967-020-07167-9

    Article  CAS  Google Scholar 

  28. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2018) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048

    Article  CAS  Google Scholar 

  29. Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem 2017:1–11. https://doi.org/10.1155/2017/3039817

    Article  CAS  Google Scholar 

  30. Khezami L, Taha KK, Modwi A (2017) Efficient removal of cobalt from aqueous solution by zinc oxide nanoparticles: kinetic and thermodynamic studies". Zeitschrift für Naturforschung 72(5):409–418. https://doi.org/10.1515/zna-2016-0477

    Article  CAS  Google Scholar 

  31. Lefatshe K, Muiva CM, Kebaabetswe LP (2017) Extraction of Nanocellulose and In-Situ Casting of ZnO/Cellulose Nanocomposite with Enhanced Photocatalytic and Antibacterial Activity. Carbohydr Polym 164:301–308. https://doi.org/10.1016/j.carbpol.2017.02.020

    Article  CAS  PubMed  Google Scholar 

  32. Abdelrehim MM, Mohy ElDin MH, El-Shabrawy SM, Fahmy AE, Abdelhamid SM, Ramadan HS (2019) Synthesis and characterization of metallic and polymeric nanoparticles and their effect on the antibacterial properties of microhybrid composite resin. Alexandria Dental J Article 7 44(2):39–45. https://doi.org/10.21608/ADJALEXU.2019.57361

    Article  Google Scholar 

  33. Prokhorov E, Luna-Bárcenas G, Yáñez LJM, Sánchez AG, Kovalenko Y (2020) Chitosan-ZnO nanocomposites assessed by dielectric, mechanical, and piezoelectric properties. Polymers 12(9):1991–2005. https://doi.org/10.3390/polym12091991

    Article  CAS  PubMed Central  Google Scholar 

  34. Zak AK, Abd. Majid WH, Mahmoudian MR, Darroudi M, Yousefi R (2013) Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study. Adv Powder Technol 24(3):618–624. https://doi.org/10.1016/j.apt.2012.11.008

    Article  CAS  Google Scholar 

  35. Sagadevan S, Vennila S, Anita Lett J, Marlinda AR, Aliya Binti Hamizi N, Rafie Johan M (2019) Tailoring the structural, morphological, optical, thermal and dielectric characteristics of ZnO nanoparticles using starch as a capping agent. Results in Physics 15 (2019) 102543 ISSN 2211-3797 https://doi.org/10.1016/j.rinp.2019.102543.

  36. Hassan HS, Attia LA, Dakroury GA (2020) Exploration of the parameters affecting the radioactive europium removal from aqueous solutions by activated carbon-epoxy composite. Appl Radiat Isot 164:109278. https://doi.org/10.1016/j.apradiso.2020.109278

    Article  CAS  PubMed  Google Scholar 

  37. Puigdomenech I (2013) Make equilibrium diagrams using sophisticated algorithms (MEDUSA). Inorganic Chemistry Royal Institute of Technology Stockholm Sweden. http://www.kemi.kth.se/medusahttps://sites.google.com/site/chemdiagr/

  38. Hasan S, Iasir ARM, Ghosh TK, Gupta BS, Prelas MA (2019) Characterization and adsorption behavior of strontium from aqueous solutions onto chitosan-fuller’s earth beads. Healthcare 7(1):52. https://doi.org/10.3390/healthcare7010052

    Article  PubMed Central  Google Scholar 

  39. Al-Senani GM, Al-Fawzan FF (2019) Adsorption study of heavy metal ions from aqueous solution by nanoparticle of wild herbs. Egypt J Aquat Res 44(3):187–194 ISSN 1687-4285, https://doi.org/10.1016/j.ejar.2018.07.006

  40. Zhang N, Liu S, Jiang L, Luo M, Chi C, Ma J (2015) Adsorption of strontium from aqueous solution by silica mesoporous SBA-15. J Radioanal Nucl Chem 303:1671–1677. https://doi.org/10.1007/s10967-014-3681-1

    Article  CAS  Google Scholar 

  41. Robati D (2013) Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J Nanostruct Chem 3(1):55. https://doi.org/10.1186/2193-8865-3-55

    Article  Google Scholar 

  42. Igwe JC, Abia AA (2007) Adsorption isotherm studies of Cd (II), Pb (II) and Zn (II) ions bioremediation from aqueous solution using unmodified and EDTA-modified maize cob. Eclética Química 32(1):33–42. https://doi.org/10.1590/S0100-46702007000100005

    Article  CAS  Google Scholar 

  43. Li D, Zhang B, Xuan F (2015) The sequestration of Sr(II) and Cs(I) from aqueous solutions by magnetic graphene oxides. J Mol Liq 209:508–514. https://doi.org/10.1016/j.molliq.2015.06.022

    Article  CAS  Google Scholar 

  44. Tan Y, Feng J, Qiu L, Zhao Z, Zhang X, Zhang H (2017) The adsorption of Sr(II) and Cs(I) ions by irradiated Saccharomyces cerevisiae. J Radioanal Nucl Chem 314:2271–2280. https://doi.org/10.1007/s10967-017-5598-y

    Article  CAS  Google Scholar 

  45. Lee CH, Park JM, Lee MG (2014) Adsorption characteristics of Sr(II) and Cs(I) ions by zeolite synthesized from coal fly ash. Int J Environ Sci 23(12):1987–1998. https://doi.org/10.5322/JESI.2014.23.12.1987

    Article  Google Scholar 

  46. Ali MMS, Sami NM, El-Sayed AA (2020) Removal of Cs+, Sr2+ and Co2+ by activated charcoal modified with Prussian blue nanoparticle (PBNP) from aqueous media: kinetics and equilibrium studies. J Radioanal Nucl Chem 324:189–201. https://doi.org/10.1007/s10967-020-07067-y

    Article  CAS  Google Scholar 

  47. Chen C, Wang J (2008) Removal of Pb2+, As+, Cs+ and Sr2+ from aqueous solution by brewery’s waste biomass. J Hazard Mater 151:65–70. https://doi.org/10.1016/j.jhazmat.2007.05.046

    Article  CAS  PubMed  Google Scholar 

  48. Uematsu Y, Ogata F, Saenjum C, Nakamura T, Kawasaki N (2020) Removing Sr(II) and Cs(I) from the aqueous phase using basil seed and elucidating the adsorption mechanism. Sustainability 12(7):2895. https://doi.org/10.3390/su12072895

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to E. A. A. El-Shazly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakroury, G.A., El-Shazly, E.A.A. & Hassan, H.S. Preparation and characterization of ZnO/Chitosan nanocomposite for Cs(I) and Sr(II) sorption from aqueous solutions. J Radioanal Nucl Chem 330, 159–174 (2021). https://doi.org/10.1007/s10967-021-07935-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07935-1

Keywords

Navigation