Skip to main content
Log in

Nuclear forensics methodology identifies legacy plutonium from the Manhattan Project

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The X-10 nuclear reactor was built at the Clinton Engineering Works in Oak Ridge, Tennessee, USA, as the world’s first Pu production reactor. Operation commenced in November 1943, producing Pu on the gram-scale for the first time. A 61.1 mg sample of 239Pu has been identified at Los Alamos National Laboratory containing multiple forensic signatures consistent with production from the X-10 reactor in early 1944, when the first samples of reactor-produced Pu were shipped from X-10 to Los Alamos. Our nuclear forensics investigation included Pu isotopic analysis, chronometry, X-10 reactor physics simulations, and trace metal analyses. This historic sample has been determined to be among the oldest reactor-produced Pu reported in the literature and is among the first 1.4 kg of Pu ever produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data and materials availability

All data associated with this project is made available in the main text or the supplementary information. Data is also made publicly available through the Texas A&M University Cyclotron Institute publication database (cyclotron.tamu.edu/hamilton). The material discussed here remains at Los Alamos National Laboratory and Texas A&M University; however, the entirety of the sample was dissolved and separated on October 16, 2019.

References

  1. Seaborg GT (1995) Transuranium elements: past, present, and future. Acc Chem Res 28(6):257–264. https://doi.org/10.1021/ar00054a003

    Article  CAS  Google Scholar 

  2. Kennedy JW, Seaborg GT, Segrè E, Wahl AC (1946) Properties of 94(239). Phys Rev 70(7–8):555–556. https://doi.org/10.1103/PhysRev.70.555

    Article  Google Scholar 

  3. Schwantes JM, Douglas M, Bonde SE, Briggs JD, Farmer OT, Greenwood LR, Lepel EA, Orton CR, Wacker JF, Luksic AT (2009) Nuclear archeology in a bottle: evidence of pre-Trinity U.S. weapons activities from a waste burial site. Anal Chem 81(4):1297–1306. https://doi.org/10.1021/ac802286a

    Article  CAS  PubMed  Google Scholar 

  4. Hawkins D, Manhattan District History, Project Y, The Los Alamos Project; Los Alamos National Laboratory (1946)

  5. Duffield R, Garner C, Wahl A (1944) Los Alamos project handbook, chemistry of plutonium; Los Alamos National Laboratory

  6. Multiple Authors (1946) Part II—Clinton Laboratories. In: Hadden G (ed) Manhattan Distric History—Pile Project X-10, vol II—Research—Clinton Laboratories. Washington, D.C.: Manhattan District

  7. Hoddeson L (1993) The discovery of spontaneous fission in plutonium during World War II. Hist Stud Phys Biol Sci 23(2):279–300. https://doi.org/10.2307/27757700

    Article  Google Scholar 

  8. Bartlett AA, Swinehart DF (1946) Isotopic composition of plutonium III; Los Alamos National Laboratory

  9. Bartlett AA, Swinehart DF (1945) Isotopic composition of plutonium II; Los Alamos National Laboratory

  10. Bartlett AA, Swinehart DF, Thompson RW (1944) Isotopic composition of plutonium I; Los Alamos National Laboratory

  11. Hempelmann L; Health report; Los Alamos National Laboratory (1944)

  12. Seybolt AU, Lovinson L, Zaring J; Metallurgy of plutonium; Los Alamos National Laboratory (1944)

  13. Mathew K, Kayzar-Boggs T, Varga Z, Gaffney A, Denton J, Fulwyler J, Garduno K, Gaunt A, Inglis J, Keller R, Kinman W, Labotka D, Lujan E, Maassen J, Mastren T, May I, Mayer K, Nicholl A, Ottenfeld C, Parsons-Davis T, Porterfield D, Rim J, Rolison J, Stanley F, Steiner R, Tandon L, Thomas M, Torres R, Treinen K, Wallenius M, Wende A, Williams R, Wimpenny J (2019) Intercomparison of the radio-chronometric ages of plutonium-certified reference materials with distinct isotopic compositions. Anal Chem 91(18):11643–11652. https://doi.org/10.1021/acs.analchem.9b02156

    Article  CAS  PubMed  Google Scholar 

  14. Varga Z, Nicholl A, Wallenius M, Mayer K (2016) Plutonium age dating (production date measurement) by inductively coupled plasma mass spectrometry. J Radioanal Nucl Chem 307:1919–1926. https://doi.org/10.1007/s10967-015-4418-5

    Article  CAS  PubMed  Google Scholar 

  15. Varga Z, Nicholl A, Zsigrai J, Wallenius M, Mayer K (2018) Methodology for the preparation and validation of plutonium age dating materials. Anal Chem 90(6):4019–4024. https://doi.org/10.1021/acs.analchem.7b05204

    Article  CAS  PubMed  Google Scholar 

  16. Gaffney AM, Wimpenny JBN, Parsons-Davis T, Williams RW, Torres RA, Chung BW (2018) A case study in plutonium radiochronometry using multiple isotope systems. J Radioanal Nucl Chem 318(1):287–295. https://doi.org/10.1007/s10967-018-6131-7

    Article  CAS  Google Scholar 

  17. Byerly BL, Stanley F, Spencer K, Colletti L, Garduno K, Kuhn K, Lujan E, Martinez A, Porterfield D, Rim J, Schappert M, Thomas M, Townsend L, Xu N, Tandon L (2016) Forensic investigation of plutonium metal: a case study of CRM 126. J Radioanal Nucl Chem 310(2):623–632. https://doi.org/10.1007/s10967-016-4919-x

    Article  CAS  Google Scholar 

  18. Rim JH, Kuhn KJ, Tandon L, Xu N, Porterfield DR, Worley CG, Thomas MR, Spencer KJ, Stanley FE, Lujan EJ, Garduno K, Trellue HR (2017) Determination of origin and intended use of plutonium metal using nuclear forensic techniques. Forensic Sci Int 273(Supplement C):e1–e9. https://doi.org/10.1016/j.forsciint.2017.01.014

    Article  CAS  PubMed  Google Scholar 

  19. Kips R, Weber PK, Kristo MJ, Jacobsen B, Ramon EC (2019) Microscale isotopic variation in uranium fuel pellets with implications for nuclear forensics. Anal Chem 91(18):11598–11605. https://doi.org/10.1021/acs.analchem.9b01737

    Article  CAS  PubMed  Google Scholar 

  20. Glennon KJ, Osborn JM, Burns JD, Kitcher ED, Chirayath SS, Folden CM (2019) Measuring key Sm isotope ratios in irradiated UO2 for use in plutonium discrimination nuclear forensics. J Radioanal Nucl Chem 320(2):405–414. https://doi.org/10.1007/s10967-019-06486-w

    Article  CAS  Google Scholar 

  21. Kitcher ED, Osborn JM, Chirayath SS (2019) Sensitivity studies on a novel nuclear forensics methodology for source reactor-type discrimination of separated weapons grade plutonium. Nucl Eng Technol 51(5):1355–1364. https://doi.org/10.1016/j.net.2019.02.019

    Article  CAS  Google Scholar 

  22. Osborn JM, Glennon KJ, Kitcher ED, Burns JD, Folden CM III, Chirayath SS (2018) Computational and experimental forensics characterization of weapons-grade plutonium produced in a thermal neutron environment. Nucl Eng Technol 50(6):820–828. https://doi.org/10.1016/j.net.2018.04.017

    Article  CAS  Google Scholar 

  23. Swinney MW, Folden CM III, Ellis RJ, Chirayath SS (2017) Experimental and computational forensics characterization of weapons-grade plutonium produced in a fast reactor neutron environment. Nucl Technol 197(1):1–11. https://doi.org/10.13182/NT16-76

    Article  Google Scholar 

  24. Favalli A, Vo D, Grogan B, Jansson P, Liljenfeldt H, Mozin V, Schwalbach P, Sjöland A, Tobin SJ, Trellue H, Vaccaro S (2016) Determining initial enrichment, burnup, and cooling time of pressurized-water-reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden. Nucl Instrum Methods Phys Res A 820(Supplement C):102–111. https://doi.org/10.1016/j.nima.2016.02.072

    Article  CAS  Google Scholar 

  25. Stanley FE, Stalcup AM, Spitz HB (2013) A brief introduction to analytical methods in nuclear forensics. J Radioanal Nucl Chem 295(2):1385–1393. https://doi.org/10.1007/s10967-012-1927-3

    Article  CAS  Google Scholar 

  26. Lantzos I, Kouvalaki C, Nicolaou G (2015) Plutonium fingerprinting in nuclear forensics of spent nuclear fuel. Prog Nucl Energy 85:333–336. https://doi.org/10.1016/j.pnucene.2015.07.002

    Article  CAS  Google Scholar 

  27. Savina JA, Steeb JL, Savina MR, Mertz CJ, Fortner JA, Sullivan VS, Bennett ME, Chamberlain DB (2017) A non-destructive internal nuclear forensic investigation at Argonne: discovery of a Pu planchet from 1948. J Radioanal Nucl Chem 311(1):243–252. https://doi.org/10.1007/s10967-016-4893-3

    Article  CAS  Google Scholar 

  28. Wallenius M, Lützenkirchen K, Mayer K, Ray I, de las Heras LA, Betti M, Cromboom O, Hild M, Lynch B, Nicholl A, Ottmar H, Rasmussen G, Schubert A, Tamborini G, Thiele H, Wagner W, Walker C, Zuleger E (2007) Nuclear forensic investigations with a focus on plutonium. J Alloys Compd 444–445:57–62. https://doi.org/10.1016/j.jallcom.2006.10.161

    Article  CAS  Google Scholar 

  29. Wallenius M, Peerani P, Koch L (2000) Origin determination of plutonium material in nuclear forensics. J Radioanal Nucl Chem 246(2):317–321. https://doi.org/10.1023/A:1006774524272

    Article  CAS  Google Scholar 

  30. Osborn JM, Glennon KJ, Kitcher ED, Burns JD, Folden CM III, Chirayath SS (2018) Experimental validation of a nuclear forensics methodology for source reactor-type discrimination of chemically separated plutonium. Nucl Eng Technol 51(2):384–393. https://doi.org/10.1016/j.net.2018.11.003

    Article  CAS  Google Scholar 

  31. Osborn JM, Kitcher ED, Burns JD, Folden CM III, Chirayath SS (2017) Nuclear forensics methodology for reactor-type attribution of chemically separated plutonium. Nucl Technol 201:1–10. https://doi.org/10.1080/00295450.2017.1401442

    Article  Google Scholar 

  32. Chirayath SS, Osborn JM, Coles TM (2015) Trace fission product ratios for nuclear forensics attribution of weapons-grade plutonium from fast and thermal reactors. Sci Global Secur 23(1):48–67. https://doi.org/10.1080/08929882.2015.996079

    Article  Google Scholar 

  33. Mendoza PM, Chirayath SS, Folden CM III (2016) Fission product decontamination factors for plutonium separated by PUREX from low-burnup, fast-neutron irradiated depleted UO2. Appl Radiat Isot 118:38–42. https://doi.org/10.1016/j.apradiso.2016.08.021

    Article  CAS  PubMed  Google Scholar 

  34. Glennon KJ, Bond EM, Bredeweg TA, Chirayath SS, Folden CM III (2020) Isolating trace fission product elements in separated plutonium for applications in nuclear forensics. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-020-07448-3

    Article  Google Scholar 

  35. Werner CJ (2017) MCNP users manual - code version 6.2; Los Alamos National Laboratory

  36. Compton AH, Whitaker MD, Doan RL, Newson HW (1944) Physics of the clinton pile; Oak Ridge National Laboratory

  37. Rupp AF, Cox JA (1955) Operation of the ORNL graphite reactor and the low-intensity test reactor; Oak Ridge National Lab

  38. Moody KJ, Hutcheon ID, Grant PM (2015) Nuclear forensic analysis. CRC Press, Boca Raton

    Google Scholar 

  39. Wahl AC, Mastick DF, Pittman FK; Purification of Pu; Los Alamos National Laboratory, 1944

Download references

Acknowledgements

The authors would like to thank Prof. B. V. Miller of the Texas A&M University Department of Geology and Geophysics for assistance with mass spectrometry operations and consumables. This manuscript was released to the public by Los Alamos National Laboratory under document number LA-UR-20-28280. This work was supported by the Los Alamos National Laboratory Seaborg Institute program and the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003180. This work was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Contributions

K.J.G. wrote the manuscript, performed the forensic analyses, and conducted the formal data analysis. K.J.G. and E.M.B. conceptualized the project and E.M.B. supervised all work with Pu at Los Alamos. S.S.C. conceptualized the reactor simulations. P.J.O. developed the reactor model and performed the simulations. C.M.F. and S.S.C. provided supervision of project goals, scope, and progress. All authors provided editing and review of the finalized manuscript.

Corresponding author

Correspondence to Charles M. Folden III.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10967_2021_7924_MOESM1_ESM.pdf

Description of the reactor physics models employed here and their tabulated outputs (Tables S1 – S4 and Fig. S3 – S5), as well as the radiopurity evaluations of Plutonium 4 (Fig. S1 – S2) and a reproduction of the LANL memorandum referenced in Table 1 (Fig. S6). (PDF 781 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glennon, K.J., Bond, E.M., Bredeweg, T.A. et al. Nuclear forensics methodology identifies legacy plutonium from the Manhattan Project. J Radioanal Nucl Chem 330, 57–65 (2021). https://doi.org/10.1007/s10967-021-07924-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07924-4

Keywords

Navigation