Skip to main content
Log in

First study on 236U in environmental samples from Bangladesh by ICP-MS/MS prior to the operation of its first nuclear power plant

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

For the first time, using ICP-MS/MS, the 234U, 235U, 236U, and 238U in the sediment samples from coastal region, Bangladesh, were measured as 5.13–5.48, 0.234–0.252, (2.70–4.59) × 10–5, and 4.92–5.31 Bq kg−1, and the 236U/238U atom ratios were (2.87–4.57) × 10–8, indicating the predominate influence of global fallout on 236U. For the rock samples from hilly area, the corresponding concentrations were much higher as 18.7–4023, 0.902–173, 9.58 × 10–5–1.29 × 10–2, and 18.8–2279 Bq kg−1, but the 236U/238U atom ratios were in the same range of (1.52–3.04) × 10–8, indicating the 236U was primarily due to the natural nuclear reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Karim R, Karim ME, Muhammad-Sukki F, Abu-Bakar SH, Bani NA, Munir AB, Kabir AI, Ardila-Rey JA, Mas’ud AA (2018) Nuclear energy development in Bangladesh: a study of opportunities and challenges. Energies 11:1672. https://doi.org/10.3390/en11071672

    Article  Google Scholar 

  2. Bu W, Zheng J, Ketterer ME, Hu S, Uchida S, Wang X (2017) Development and application of mass spectrometric techniques for ultra-trace determination of 236U in environmental samples-A review. Anal Chim Acta 995:1–20

    Article  CAS  PubMed  Google Scholar 

  3. Christl M, Casacuberta N, Lachner J, Herrmann J, Synal H (2017) Anthropogenic 236U in the North Sea-A closer look into a source region. Environ Sci Technol 51:12146–12153

    Article  CAS  PubMed  Google Scholar 

  4. Boulyga SF, Becker JS (2001) Determination of uranium isotopic composition and 236U content of soil samples and hot particles using inductively coupled plasma mass spectrometry. Fresenius J Anal Chem 370:612–617

    Article  CAS  PubMed  Google Scholar 

  5. Sakaguchi A, Steier P, Takahashi Y, Yamamoto M (2014) Isotopic compositions of 236U and Pu isotopes in “black substances” collected from roadsides in Fukushima Prefecture: fallout from the Fukushima Dai-ichi Nuclear Power Plant accident. Environ Sci Technol 48:3691–3697

    Article  CAS  PubMed  Google Scholar 

  6. Shinonaga T, Steier P, Lagos M, Ohkura T (2014) Airborne plutonium and non-natural uranium from the Fukushima DNPP found at 120 km distance a few days after reactor hydrogen explosions. Environ Sci Technol 48:3808–3814

    Article  CAS  PubMed  Google Scholar 

  7. Yang G, Tazoe H, Hayano K, Okayama K, Yamada M (2017) Isotopic compositions of 236U, 239Pu, and 240Pu in soil contaminated by the Fukushima Daiichi Nuclear Power Plant accident. Sci Rep 7:13619. https://doi.org/10.1038/s41598-017-13998-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang G, Tazoe H, Yamada M (2017) Can 129I track 135Cs, 236U, 239Pu, and 240Pu apart from 131I in soil samples from Fukushima Prefecture, Japan? Sci Rep 7:15369. https://doi.org/10.1038/s41598-017-15714-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sakaguchi A, Kawai K, Steier P, Quinto F, Mino K, Tomita J, Hoshi M, Whitehead N, Yamamoto M (2009) First results on 236U levels in global fallout. Sci Total Environ 407:4238–4242

    Article  CAS  PubMed  Google Scholar 

  10. Ferdous J, Rahman MM, Rahman R, Hasan S, Ferdous N (2015) Radioactivity distributions in soils from Habiganj District, Bangladesh and their radiological implications. Malays J Soil Sci 19:59–71

    Google Scholar 

  11. Majumder RK (2014) Uranium exploration status in Bangladesh: conceptual study. In Proceedings of the IAEA, Technical Meeting on Uranium from Unconventional Resources, Vienna, Austria, 4–7 November, pp. 1–26.

  12. Yang G, Tazoe H, Yamada M (2016) Determination of 236U in environmental samples by single extraction chromatography coupled to triple-quadrupole inductively coupled plasma-mass spectrometry. Anal Chim Acta 944:44–50

    Article  CAS  PubMed  Google Scholar 

  13. Yang G, Tazoe H, Yamada M (2016) Rapid determination of 135Cs and precise 135Cs/137Cs atomic ratio in environmental samples by single-column chromatography coupled to triple-quadrupole inductively coupled plasma-mass spectrometry. Anal Chim Acta 908:177–184

    Article  CAS  PubMed  Google Scholar 

  14. Yang G, Tazoe H, Yamada M (2018) Improved approach for routine monitoring of 129I activity and 129I/127I atom ratio in environmental samples using TMAH extraction and ICP-MS/MS. Anal Chim Acta 1008:66–73

    Article  CAS  PubMed  Google Scholar 

  15. Bu W, Ni Y, Steinhauser G, Zheng W, Zheng J, Furuta N (2018) The role of mass spectrometry in radioactive contamination assessment after the Fukushima nuclear accident. J Anal At Spectrom 33:519–546

    Article  CAS  Google Scholar 

  16. Yang G, Rahman MS, Tazoe H, Hu J, Shao Y, Yamada M (2019) 236U and radiocesium in river bank soil and river sediment in Fukushima Prefecture, after the Fukushima Daiichi Nuclear Power Plant accident. Chemosphere 225:388–394

    Article  CAS  PubMed  Google Scholar 

  17. Liu Z, Hu J, Yamada M, Yang G (2020) Uranium and plutonium isotopes and their environmental implications in surface sediments from the Yangtze River catchment and estuary. CATENA 193:104605. https://doi.org/10.1016/j.catena.2020.104605

    Article  CAS  Google Scholar 

  18. Shao Y, Yang G, Luo M, Xu D, Tazoe H, Yamada M, Ma L (2021) Background and fingerprint characteristics of anthropogenic 236U and 137Cs in soil and road dust samples collected from Beijing and Zhangjiakou. China Chemosphere 263:127909. https://doi.org/10.1016/j.chemosphere.2020.127909

    Article  CAS  PubMed  Google Scholar 

  19. Shao Y, Yang G, Xu D, Yamada M, Tazoe H, Luo M, Cheng H, Yang K, Ma L (2019) First report on global fallout 236U and uranium atom ratios in soils from Hunan Province, China. J Environ Radioact 197:1–8

    Article  CAS  PubMed  Google Scholar 

  20. Wu Y, Chen Z, Wang Z, Chen S, Ge D, Chen C, Jia J, Li Y, Jin M, Zhou T, Wang F, Hu L (2019) Nuclear safety in the unexpected second nuclear era. Proc Natl Acad Sci USA 116:17673–17682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Everett SE, Tims SG, Hancock GJ, Bartley R, Fifield LK (2008) Comparison of Pu and 137Cs as tracers of soil and sediment transport in a terrestrial environment. J Environ Radioact 99:383–393

    Article  CAS  PubMed  Google Scholar 

  22. Herring JS (2012) Uranium and thorium resources. In: Meyers RA (ed) Encyclopedia of sustainability science and technology. Springer, New York

    Google Scholar 

  23. Islam GS, Abdullah MNA (1998) Determination of trace concentration of uranium in soils by the nuclear track technique. IC/IR/98/7, Internal report. United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency

  24. Chowdhury MI, Alam MN, Hazari SKS (1999) Distribution of radionuclides in the river sediments and coastal soils of Chittagong, Bangladesh and evaluation of the radiation hazard. Appl Radiat Isot 51:747–755

    Article  CAS  Google Scholar 

  25. Mollah AS, Chakraborty SR (2009) Radioactivity and radiation levels in and around the proposed nuclear power plant site at Rooppur. Jpn J Phys 44:408–413

    CAS  Google Scholar 

  26. Shahabuddin M, Hossain MD, Hossain SM, Hoque MM, Mollah MM, Halim MA (2010) Soil contamination in nuclear reactor surrounding areas in Savar, Bangladesh using instrumental neutron activation analysis method. Int J Environ Sci 1:292–295

    Google Scholar 

  27. Khatun R, Saadat AHM, Ahasan MM, Akter S (2013) Assessment of natural radioactivity and radiation hazard in soil samples of Rajbari District of Bangladesh. Jahangirnagar University Environ Bull 2:1–8

    Article  Google Scholar 

  28. Chakraborty SR, Alam MdK (2014) Assessment of natural radioactivity in the sea beaches of Bangladesh. Radiat Prot Environ 37:6–13

    Article  Google Scholar 

  29. Khan R, Rouf MdA, Das S, Tamim U, Naher K, Podder J, Hossain SMd (2017) Spatial and multi-layered assessment of heavy metals in the sand of Cox’s-Bazar beach of Bangladesh. Reg Stud Mar Sci 16:171–180

    Google Scholar 

  30. Yasmin S, Barua BS, Khandaker MU, Kamal M, Rashid MdA, Sani SFA, Ahmed H, Nikouravan B, Bradley DA (2018) The presence of radioactive materials in soil, sand and sediment samples of Potenga sea beach area, Chittagong, Bangladesh: geological characteristics and environmental implication. Results Phys 8:1268–1274

    Article  Google Scholar 

  31. Richter S, Alonso A, De Bolle W, Wellum R, Taylor PDP (1999) Isotopic “fingerprints” for natural uranium ore samples. Int J Mass Spectrom 193:9–14

    Article  CAS  Google Scholar 

  32. Srncik M, Mayer K, Hrnecek E, Wallenius M, Varga Z, Steier P, Wallner G (2011) Investigation of the 236U/238U isotope abundance ratio in uranium ores and yellow cake samples. Radiochim Acta 99:335–339

    Article  CAS  Google Scholar 

  33. Kasar S, Aono T, Sahoo SK (2021) Precise measurement of 234U/238U, 235U/238U and 236U/238U isotope ratios in Fukushima soils using thermal ionization mass spectrometry. Spectrochim Acta B. https://doi.org/10.1016/j.sab.2021.106161

    Article  Google Scholar 

  34. Wang C, Hou S, Pang H, Liu Y, Gäggeler HW, Christl M, Synal H (2017) 239,240Pu and 236U records of an ice core from the eastern Tien Shan (Central Asia). J Glaciol 63:929–935

    Article  Google Scholar 

  35. Wendel CC, Oughton DH, Lind OC, Skipperud L, Fifield LK, Isaksson E, Tims SG, Salbu B (2013) Chronology of Pu isotopes and 236U in an Arctic ice core. Sci Total Environ 461–462:734–741

    Article  PubMed  CAS  Google Scholar 

  36. Winkler SR, Steier P, Carilli J (2012) Bomb fall-out 236U as a global oceanic tracer using an annually resolved coral core. Earth Planet Sci Lett 359–360:124–130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Quinto F, Steier P, Wallner G, Wallner A, Srncik M, Bichler M, Kutschera W, Terrasi F, Petraglia A, Sabbarese C (2009) The first use of 236U in the general environment and near a shutdown nuclear power plant. Appl Radiat Isot 67:1775–1780

    Article  CAS  PubMed  Google Scholar 

  38. Villa-Alfageme M, Chamizo E, Santos-Arevalo FJ, Lopez-Gutierrez JM, Gomez-Martinez I, Hurtado-Bermudez S (2018) Natural and artificial radionuclides in a marine core. First results of 236U in north Atlantic Ocean sediments. J Environ Radioact 186:152–160

    Article  CAS  PubMed  Google Scholar 

  39. Diez-Fernández S, Jaegler H, Bresson C, Chartier F, Evrard O, Hubert A, Nonell A, Pointurier F, Isnard H (2019) A new method for determining 236U/238U isotope ratios in environmental samples by means OF ICP-MS/MS. Talanta. https://doi.org/10.1016/j.talanta.2019.120221

    Article  PubMed  Google Scholar 

  40. Jaegler H, Pointurier F, Diez-Fernández S, Gourgiotis A, Isnard H, Hayashi S, Tsuji H, Onda Y, Hubert A, Laceby JP, Evrard O (2019) Reconstruction of uranium and plutonium dynamics at ultra-trace concentrations in sediment accumulated in the Mano Dam reservoir, Japan, before and after the Fukushima accident. Chemosphere 225:849–858

    Article  CAS  PubMed  Google Scholar 

  41. Quinto F, Hrnecek E, Krachler M, Shotyk W, Steier P, Winkler SR (2013) Measurements of 236U in ancient and modern peat samples and implications for postdepositional migration of fallout radionuclides. Environ Sci Technol 47:5243–5250

    Article  CAS  PubMed  Google Scholar 

  42. Srncik M, Steier P, Wallner G (2011) Depth profile of 236U/238U in soil samples in La Palma, Canary Islands. J Environ Radioact 102:614–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. De Cesare M, Fifield LK, Sabbarese C, Tims SG, De Cesare N, D’Onofrio A, D’Arco A, Esposito AM, Petraglia A, Roca C, Terrasi F (2013) Actinides AMS at CIRCE and 236U and Pu measurements of structural and environmental samples from in and around a mothballed nuclear power plant. Nucl Instrum Methods Phys Res B 294:152–159

    Article  CAS  Google Scholar 

  44. Ketterer ME, Groves AD, Strick BJ, Asplund CS, Jones VJ (2013) Deposition of 236U from atmospheric nuclear testing in Washington state (USA) and the Pechora region (Russian Arctic). J Environ Radioact 118:143–149

    Article  CAS  PubMed  Google Scholar 

  45. Sakaguchi A, Kawai K, Steier P, Imanaka T, Hoshi M, Endo S, Zhumadilov K, Yamamoto M (2010) Feasibility of using 236U to reconstruct close-in fallout deposition from the Hiroshima atomic bomb. Sci Total Environ 408:5392–5398

    Article  CAS  PubMed  Google Scholar 

  46. Schneider S, Bister S, Christl M, Hori M, Shozugawa K, Synal H, Steinhauser G, Walther C (2017) Radionuclide pollution inside the Fukushima Daiichi exclusion zone, part 2: forensic search for the “forgotten” contaminants uranium-236 and plutonium. Appl Geochem 85:194–200

    Article  CAS  Google Scholar 

  47. Boulyga SF, Heumann KG (2006) Determination of extremely low 236U/238U isotope ratios in environmental samples by sector-field inductively coupled plasma mass spectrometry using high-efficiency sample introduction. J Environ Radioact 88:1–10

    Article  CAS  PubMed  Google Scholar 

  48. Sahoo SK, Kimura S, Watanabe Y, Shiraishi K, Masuda A (2002) Detection of 236U and variation of uranium isotope composition in the soil samples affected by the JCO criticality accident. Proc Japan Acad Ser B 78:196–200

    Article  Google Scholar 

  49. Lee SH, Povinec PP, Wyse E, Hotchkis MA (2008) Ultra-low-level determination of 236U in IAEA marine reference materials by ICPMS and AMS. Appl Radiat Isot 66:823–828

    Article  CAS  PubMed  Google Scholar 

  50. Srncik M, Hrnecek E, Steier P, Wallner G (2011) Determination of U, Pu and Am isotopes in Irish Sea sediment by a combination of AMS and radiometric methods. J Environ Radioact 102:331–335

    Article  CAS  PubMed  Google Scholar 

  51. Ketterer ME, Hafer KM, Link CL, Royden CS, Hartsock WJ (2003) Anthropogenic 236U at Rocky Flats, Ashtabula river harbor, and Mersey estuary: three case studies by sector inductively coupled plasma mass spectrometry. J Environ Radioact 67:191–206

    Article  CAS  PubMed  Google Scholar 

  52. Tortorello R, Widom E, Renwick WH (2013) Use of uranium isotopes as a temporal and spatial tracer of nuclear contamination in the environment. J Environ Radioact 124:287–300

    Article  CAS  PubMed  Google Scholar 

  53. Pourcelot L, Boulet B, Le Corre C, Loyen J, Fayolle C, Tournieux D, Van Hecke W, Martinez B, Petit J (2011) Isotopic evidence of natural uranium and spent fuel uranium releases into the environment. J Environ Monit 13:355–361

    Article  CAS  PubMed  Google Scholar 

  54. Ram R, Charalambous FA, Tardio J, Bhargava SK (2011) Characterisation of uraninite using X-ray diffraction (XRD) and general area detector diffraction system (GADDS). Proceedings of Chemeca, pp.1–11. Engineers Australia, Australia

  55. Ovaskainen R (1999) The determination of minor isotope abundances in naturally occurring uranium materials. University of Helsinki, Finland, The tracing power of isotopic signatures for uranium

    Google Scholar 

  56. Mustaque S, McHugh CM, Mondal DR, Akhter SH, Iqbal M (2016) Modern sedimentation along the SE Bangladesh coast reveal surprisingly low accumulation rates. American Geophysical Union Fall Meeting.

Download references

Acknowledgements

This work was supported by the Ministry of Science & Technology, Government of the People’s Republic of Bangladesh (Bangabandhu Science and Technology Fellowship Trust, in 2017-2018 and also under special allocation No. Physical 261, in 2014–2015). The authors wish to express their gratitude to Dr. Minoru Sasaki for processing the rock samples. M.F. Alam thanks the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, for conducting the research work at the Hirosaki University, Japan under the MEXT Nuclear Researchers Exchange Program. M.F. Alam also thanks to Institute of Environmental Radioactivity, Fukushima University for allowing him to conduct additional sample analysis. This work was also partly supported by JSPS KAKENHI (19J14291, 21K12287) and the Sasakawa Scientific Research Grant from the Japan Science Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guosheng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.F., Hu, J., Yang, G. et al. First study on 236U in environmental samples from Bangladesh by ICP-MS/MS prior to the operation of its first nuclear power plant. J Radioanal Nucl Chem 330, 103–111 (2021). https://doi.org/10.1007/s10967-021-07931-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07931-5

Keywords

Navigation