Skip to main content
Log in

Crosslinked electrospinning membranes with contamination resistant properties for highly efficient oil–water separation

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

To achieve the effluent standards or water purification, many water-treatment methods including membrane separation have been applied to separate the oily contaminations and clean water. However, most of the membranes displayed a low separation efficiency or poor reusability due to the functional group loss or their surface adhesion of contaminations including oil and biofoulings. Thus, in this work, a hydrophilic crosslinked PVP membrane was facilely prepared via the electrospinning and crosslinking. Crosslinking solves the problem of loss of hydrophilic components in the separation process, and the cPVP-PAN membrane has high hydrophilicity and excellent pollution resistance. The cPVP-PAN membrane showed a high separation flux (20,610 L m−2 h−1 bar−1) and an excellent separation efficiency (above 97%) for the oil–water mixtures. At the same time, the membrane has good separation capacities for different oil–water mixtures. Importantly, it shows high separation flux of O/W emulsion (569 L m−2 h−1) only under gravity conditions and a low flux-loss (8.08% after 10-cycle filtration). Furthermore, the membrane could effectively resist the contamination of BSA protein and oil, the flux recovery rates (FRRs) were more than 87.6%. Such membrane shows a broad application prospect in the complex water environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme. 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gupta RK, Dunderdale GJ, England MW, Hozumi A (2017) Oil/water separation techniques: a review of recent progresses and future directions. Journal of Materials Chemistry A 5:16025–16058

    Article  CAS  Google Scholar 

  2. Mansourizadeh A, Azad AJ (2014) Preparation of blend polyethersulfone/cellulose acetate/polyethylene glycol asymmetric membranes for oil-water separation. J Polym Res 21:375

    Article  CAS  Google Scholar 

  3. Chen Y, Jiang LY (2020) Incorporation of UiO-66-NH2 into modified PAN nanofibers to enhance adsorption capacity and selectivity for oil removal. J Polym Res 27:69

    Article  CAS  Google Scholar 

  4. Tavangar T, Ashtiani FZ, Karimi M (2020) Morphological and performance evaluation of highly sulfonated polyethersulfone/polyethersulfone membrane for oil/water separation. J Polym Res 27:252

    Article  CAS  Google Scholar 

  5. Chen HS, Huang MH, Liu YB, Meng LJ, Ma MD (2020) Functionalized electrospun nanofiber membranes for water treatment: A review. Sci Total Environ 739:139944

  6. Kumar M, Khan MA, Arafa HA (2020) Recent developments in the rational fabrication of thin film nanocomposite membranes for water purification and desalination. ACS Omega 5:3792–3800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ismail NH, Salleh WNW, Ismail AF, Hasbullah H, Yusof N, Aziz F, Jaafar J (2020) Hydrophilic polymer-based membrane for oily wastewater treatment: A review. Sep Purif Technol 233:116007

  8. Wang JR, Wang XF, Zhao S, Sun B, Wang Z, Wang JX (2020) Robust superhydrophobic mesh coated by PANI/TiO2 nanoclusters for oil/water separation with high flux, self-cleaning, photodegradation and anti-corrosion. Sep Purif Technol 235:116166

  9. Amid M, Nabian N, Delavar M (2020) Fabrication of polycarbonate ultrafiltration mixed matrix membranes including modified halloysite nanotubes and graphene oxide nanosheets for olive oil/water emulsion separation. Sep Purif Technol 251:117332

  10. Mondal S (2016) Polymeric membranes for produced water treatment: an overview of fouling behavior and its control. Rev Chem Eng 32:611–628

    Article  CAS  Google Scholar 

  11. Tan XM, Rodrigue D (2019) A Review on porous polymeric membrane preparation. part ii: production techniques with polyethylene, polydimethylsiloxane, polypropylene, polyimide, and polytetrafluoroethylene. Polymers 11:1310

  12. Ao CH, Zhao JQ, Xia T, Huang BX, Wang QH, Gai JG, Chen ZM, Zhang W, Lu CH (2021) Multifunctional La(OH)3@cellulose nanofibrous membranes for efficient oil/water separation and selective removal of dyes. Sep Purif Technol 254:117603

  13. Qin Y, Shen H, Han L, Zhu ZM, Pan F, Yang SW, Yin XZ (2020) Mechanically Robust Janus Poly(lactic acid) Hybrid Fibrous Membranes toward Highly Efficient Switchable Separation of Surfactant-Stabilized Oil/Water Emulsions. ACS Appl Mater Interfaces 12:50879–50888

    Article  CAS  PubMed  Google Scholar 

  14. Zhang  YQ, Zhang YW, Cao QP, Wang CY, Yang C, Li Y, Zhou JH (2020) Novel porous oil-water separation material with super-hydrophobicity and super-oleophilicity prepared from beeswax, lignin, and cotton. Sci Total Environ 706:135807

  15. Ding LP, Wang YQ, Zhu P, Bai YP (2019) One-step plant-inspired reaction that transform membrane hydrophobicity into high hydrophilicity and underwater super oleophobicity for oil-in-water emulsion separation. Appl Surf Sci 479:423–429

    Article  CAS  Google Scholar 

  16. Jing XS, Guo ZG (2018) Biomimetic super durable and stable surfaces with superhydrophobicity. J Mater Chem A 6:16731–16768

    Article  CAS  Google Scholar 

  17. Li BB, Liu XY, Zhang XY, Chai WB, Ma YN, Tao JJ (2015) Facile preparation of graphene-coated polyurethane sponge with superhydrophobic/superoleophilic properties. J Polym Res 22:190

    Article  CAS  Google Scholar 

  18. Chu ZL, Feng YJ, Seeger S (2015) Oil/water separation with selective superantiwetting/superwetting surface materials. Angew Chem Int Ed 54:2328–2338

    Article  CAS  Google Scholar 

  19. Liu YQ, Zhang YL, Fu XY, Sun HB (2015) Bioinspired underwater superoleophobic membrane based on a graphene oxide coated wire mesh for efficient oil/water separation. ACS Appl Mater Interfaces 7:20930–20936

    Article  CAS  PubMed  Google Scholar 

  20. Chen C, Chen BL (2019) Graphene oxide coated meshes with stable underwater superoleophobicity and anti-oil-fouling property for highly efficient oil/ water separation. Sci Total Environ 696:133777

  21. Karki HP, Kafle L, Kim HJ (2020) Composite membrane of polyacrylonitrile and spent alkaline battery powder for filtration of oil-in-water emulsions. Microporous Mesoporous Mat 297:110026

  22. Tawalbeh M, Al Mojjly A, Al-Othman A, Hilal N (2018) Membrane separation as a pre-treatment process for oily saline water. Desalination 447:182–202

  23. Zhan YQ, He SJ, Wan XY, Zhao SM, Bai YL (2018) Thermally and chemically stable poly(arylene ether nitrile)/halloysite nanotubes intercalated graphene oxide nanofibrous composite membranes for highly efficient oil/water emulsion separation in harsh environment. J Membr Sci 567:76–88

    Article  CAS  Google Scholar 

  24. Kurusu RS, Demarquette NR (2019) Surface modification to control the water wettability of electrospun mats. Int Mater Rev 64:249–287

    Article  CAS  Google Scholar 

  25. Sun W, Liu JX, Chu HQ, Dong BZ (2013) Pretreatment and membrane hydrophilic modification to reduce membrane fouling. Membranes 3:226–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shahkaramipour N, Tran TN, Ramanan S, Lin HQ (2017) Membranes with Surface-Enhanced Antifouling Properties for Water Purification. Membranes 7:13

    Article  PubMed Central  CAS  Google Scholar 

  27. Wang M, Peng M, Zhu J, Li YD, Zeng JB (2020) Mussel-inspired chitosan modified superhydrophilic and underwater superoleophobic cotton fabric for efficient oil/water separation. Carbohydr Polym 224:116449

  28. Sun F, Li TT, Zhang XY, Shiu BC, Zhang Y, Ren HT, Peng HK, Lin JH, Lou CW (2020) Facile fabrication of hydrophilic-underwater superoleophobic poly(N-isopropylacrylamide) coated PP/LPET nonwoven fabrics for highly efficient oil/water separation. Prog Org Coat 148:105780

  29. Kurakula M, Rao GK (2020) Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J Drug Delivery Sci Technol 60:102046

  30. Bhalani DV, Chandel AKS, Trivedi JS, Roy S, Jewrajka SK (2018) High molecular weight poly(vinyl pyrrolidone) induces hierarchical surface morphology in poly(vinylidene fluoride) membrane and facilitates separation of oil-water emulsions. J Membr Sci 566:415–427

    Article  CAS  Google Scholar 

  31. Helali N, Rastgar M, Ismail MF, Sadrzadeh M (2020) Development of underwater superoleophobic polyamide-imide (PAI) microfiltration membranes for oil/water emulsion separation. Sep Purif Technol 238:116451

  32. Wang CF, Wang WN, Kuo SW, Chiang YW, Hung JH, Lee KJ (2018) Biocompatible meshes with appropriate wettabilities for underwater oil transportation/collection and highly effective oil/water separation. Langmuir 34:11442–11448

    Article  CAS  PubMed  Google Scholar 

  33. Guo HS, Xu T, Zhang JM, Zhao WQ, Zhang JW, Lin CG, Zhang L (2018) A multifunctional anti-fog, antibacterial, and self-cleaning surface coating based on poly(NVP-co-MA). Chem Eng J 351:409–417

    Article  CAS  Google Scholar 

  34. Liang CJ, Bruell CJ, Marley MC, Sperry KL (2003) Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1, 1, 1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil Sediment Contam 12:207–228

    Article  CAS  Google Scholar 

  35. Tang Y, Thorn RP, Mauldin RL III, Wine PH (1988) Kinetics and spectroscopy of the SO4 radical in aqueous solution. J Photochem Photobiol A 44:243–258

    Article  CAS  Google Scholar 

  36. Mahmud M, Daik R, Adam Z (2018) Influence of poly (ethylene glycol) on the characteristics of γ radiation-crosslinked poly (vinyl pyrrolidone)-low molecular weight chitosan network hydrogels. Sains Malaysiana 47:1189–1197

    Article  CAS  Google Scholar 

  37. Can HK (2005) Synthesis of persulfate containing poly (N -vinyl-2-pyrrolidone) (PVP) hydrogels in aqueous solutions by gamma-induced radiation. Radiat Phys Chem 72:703–710

    Article  CAS  Google Scholar 

  38. Nguyen MN, Loulergue P, Karpel N, Teychene B (2019) Electron beam irradiation of polyvinylidene fluoride/polyvinylpyrrolidone ultrafiltration membrane in presence of zwitterions molecules evaluation of filtration performances. Radiat Phys Chem 159:101–110

    Article  CAS  Google Scholar 

  39. Karbownik I, Rac-Rumijowska O, Fiedot-Tobola M, Rybicki T, Teterycz H (2019) The Preparation and Characterization of Polyacrylonitrile-Polyaniline (PAN/PANI) Fibers. Materials 12:664

    Article  CAS  PubMed Central  Google Scholar 

  40. Zhang Y, Ren YL, Liu XH, Huo TG, Qin YW (2018) Preparation of durable flame retardant PAN fabrics based on amidoximation and phosphorylation. Appl Surf Sci 428:395–403

    Article  CAS  Google Scholar 

  41. Mendes LC, Rodrigues RC, Silva EP (2010) Thermal, Structural and Morphological Assessment of PVP/HA Composites. J Therm Anal Calorim 101:899–905

    Article  CAS  Google Scholar 

  42. Reksamunandar RP, Edikresnha D, Munir MM, Khairurrijal SD (2017) Encapsulation of β-carotene in poly (vinylpyrrolidone) (pvp) by electrospinning technique. Procedia Eng 170:19–23

    Article  CAS  Google Scholar 

  43. Agulto VC, Empizo MJF, Kawano K, Minami Y, Yamanoi K, Sarukura N, Yago ACC, Sarmago RV (2018) Two-step fabrication of ZnO-PVP composites with tunable visible emissions. Opt Mater 76:317–322

    Article  CAS  Google Scholar 

  44. Xiao N, Wen Q, Liu QW, Yang QB, Li YX (2014) Electrospinning preparation of β-cyclodextrin/glutaraldehyde crosslinked pvp nanofibrous membranes to adsorb dye in aqueous solution. Chem Res Chin Univ 30:1057–1062

    Article  CAS  Google Scholar 

  45. Lim JW, Lee JM, Yun SM, Park BJ, Lee YS (2019) Hydrophilic modification of polyacrylonitrile membranes by oxyfluorination. J Ind Eng Chem 15:876–882

    Article  CAS  Google Scholar 

  46. Xian JY, Hua Q, Jiang ZQ, Ma YS, Huang WX (2012) Size-dependent interaction of the poly (N-vinyl-2-pyrrolidone) capping ligand with Pd nanocrystals. Langmuir 28:6736–6741

    Article  CAS  PubMed  Google Scholar 

  47. Ida S, Wilson P, Neppolian B, Sathish M, Karthik P, Ravi P (2019) Ultrasonically aided selective stabilization of pyrrolic type nitrogen by one pot nitrogen doped and hydrothermally reduced Graphene oxide/Titania nanocomposite (N-TiO2/N-RGO) for H2 production. Ultrason Sonochem 57:62–72

    Article  CAS  PubMed  Google Scholar 

  48. Shao SL, Liu Y, Shi DT, Qing WH, Fu WW, Li JY, Fang Z, Chen YQ (2020) Control of organic and surfactant fouling using dynamic membranes in the separation of oil-in-water emulsions. J Colloid Interface Sci 560:787–794

    Article  CAS  PubMed  Google Scholar 

  49. Shao SL, Fu WW, Li XJ, Shi DT, Jiang Y, Li JY, Gong TJ, Li X (2019) Membrane fouling by the aggregations formed from oppositely charged organic foulants. Water Res 159:95–101

    Article  CAS  PubMed  Google Scholar 

  50. Pichardo-Romero D, Garcia-Arce ZP, Zavala-Ramirez A, Castro-Munoz R (2020) Current advances in biofouling mitigation in membranes for water treatment: an overview. Processes 8:182

    Article  CAS  Google Scholar 

  51. Nir S, Reches M (2016) Bio-inspired antifouling approaches: the quest towards non-toxic and non-biocidal materials. Curr Opin Biotechnol 39:48–55

    Article  CAS  PubMed  Google Scholar 

  52. Zhang RN, Cao JL, Liu YN, Guan JY, He MR, Jiang ZY (2020) Metal-Organic Framework-Intercalated Graphene Oxide Membranes for Highly Efficient Oil/Water Separation. Ind Eng Chem Res 59:16762–16771

    Article  CAS  Google Scholar 

  53. Meng HT, Xu T, Gao MY, Bai J, Li CP (2020) An oil-contamination-resistant PVP/PAN electrospinning membrane for high-efficient oil-water mixture and emulsion separation. J Appl Polym Sci e50043

  54. Xu C, Yan F, Wang MX, Yan H, Cui ZY, Li JX, He BQ (2020) Fabrication of hyperbranched polyether demulsifier modified PVDF membrane for demulsification and separation of oil-in-water emulsion. J Membr Sci 602:117974

  55. Deng Y, Zhang GW, Bai RB, Shen SS, Zhou XJ, Wyman I (2019) Fabrication of superhydrophilic and underwater superoleophobic membranes via an in situ crosslinking blend strategy for highly efficient oil/water emulsion separation. J Membr Sci 569:60–70

    Article  CAS  Google Scholar 

  56. Zhu X, Zhu L, Li H, Zhang CY, Xue JW, Wang R, Qiao XR, Xue QZ (2021) Enhancing oil-in-water emulsion separation performance of polyvinyl alcohol hydrogel nanofibrous membrane by squeezing coalescence demulsification. J Membr Sci 630:119324

  57. Liu Y, Zhang FR, Zhu WX, Su D, Sang ZY, Yan X, Sheng L, Liang J, Dou SX (2020) A multifunctional hierarchical porous SiO2/GO membrane for high efficiency oil/water separation and dye removal. Carbon 160:88–97

    Article  CAS  Google Scholar 

  58. Tan X, Hu CZ, Li X, Liu HJ, Qu JH (2020) Reversible superwettability switching of a conductive polymer membrane for oil-water separation and self-cleaning. J Membr Sci 605:118088

  59. Xian YP, Shui YG, Li MM, Pei CB, Zhang QY, Yao YY (2020) pH-Dependent thermoresponsive poly[2-(diethylamino)ethyl acrylamide]-grafted PVDF membranes with switchable wettability for efficient emulsion separation. J Appl Polym Sci 137:49032

    Article  CAS  Google Scholar 

  60. Liang Y, Kim S, Kallem P, Choi H (2019) Capillary effect in Janus electrospun nanofiber membrane for oil/water emulsion separation. Chemosphere 221:479–485

    Article  CAS  PubMed  Google Scholar 

  61. Zhao XT, Wang RX, Lan YY, Wang TY, Pan JF, Liu LF (2021) Engineering superwetting membranes through polyphenol-polycation-metal complexation for high-efficient oil/water separation: From polyphenol to tailored nanostructures. J Membr Sci 630:119310

Download references

Acknowledgements

The authors gratefully acknowledge the support from the Natural Science Foundation of Inner Mongolia (2020LH02005) and the Natural Science Foundation of Inner Mongolia University of Technology (ZZ201905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 201 KB)

Supplementary file2 (MP4 26289 KB)

Supplementary file3 (MP4 10650 KB)

Supplementary file4 (MP4 4458 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, H., Liang, H., Xu, T. et al. Crosslinked electrospinning membranes with contamination resistant properties for highly efficient oil–water separation. J Polym Res 28, 347 (2021). https://doi.org/10.1007/s10965-021-02700-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02700-0

Keywords

Navigation