Skip to main content
Log in

CO2 adsorption onto 1-butyl-3-vinylimidazolium based poly(ionic liquid)s: experimental and theoretical studies

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly (ionic liquid)s attracted enormous attention as adsorbents for the CO2 separation from natural gas. Hence, in this work poly (1-butyl-3-vinylimidazolium bromide), P[VBIm][Br], poly (1-butyl-3-vinylimidazolium thiocyanate), P[VBIm][SCN], and poly (1-butyl-3-vinylimidazolium tetrafluoroborate), P[VBIm][BF4] were synthesized and evaluated their CO2 adsorption performance. The synthesized poly(ionic liquid)s were characterized by 1H NMR, FT-IR spectroscopy, and differential scanning calorimetery (DSC) analysis. The CO2 adsorption was studied at various temperatures and pressures by quartz crystal microbalance (QCM) and experimental data were correlated by a model of dual-mode. The Henry and Langmuir contributions in CO2 adsorption were evaluated. The obtained thermodynamics and kinetics parameters of CO2 adsorption reveal that CO2 adsorption has an exothermic and physisorption nature. Also, density functional theory (DFT) computations were done in order to assess interactions between poly(ionic liquid)s with CO2 gas. DFT computations corroborated that interaction of P[VBIm][SCN] with CO2 is stronger than those of other poly(ionic liquid)s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kenarsari SD, Yang D, Jiang G, Zhang S, Wang J, Russell GA, Wei Q, Fan M (2013) Review of recent advances in carbon dioxide separation and capture. RSC Adv 3(45):22739–22773

    Article  CAS  Google Scholar 

  2. Yeo ZY, Chew TL, Zhu PW, Mohamed AR, Chai SP (2012) Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review. J Nat Gas Chem 21(3):282–298

    Article  CAS  Google Scholar 

  3. Wang L, Li Y, Li S, Ji P, Jiang C (2014) Preparation of composite poly (ether block amide) membrane for CO2 capture. J Energy Chem 23(6):717–725

    Article  Google Scholar 

  4. Li P, Pramoda KP, Chung TS (2011) CO2 separation from flue gas using polyvinyl-(room temperature ionic liquid) room temperature ionic liquid composite membranes. Ind Eng Chem Res 50:9344–9353

    Article  CAS  Google Scholar 

  5. Cao Y, Zhao Y, Song F, Zhong Q (2014) Alkali metal cation doping of metal-organic framework for enhancing carbon dioxide adsorption capacity. J Energy Chem 23(4):468–474

    Article  Google Scholar 

  6. Liu Q, Shi Y, Zheng S (2014) Amine-functionalized low-cost industrial grade multi-walled carbon nanotubes for the capture of carbon dioxide. J Energy Chem 23(1):111–118

    Article  CAS  Google Scholar 

  7. Li CX, Xiong JL, Meng H, Lu YZ (2014) From ILs to PILs: Synthesis and structure tuning of poly ionic liquids mesoporous materials. Chem Ind Eng Prog 33:1941–1950

    CAS  Google Scholar 

  8. Zhang J, Ma Ch, Zhu X, Lu Y, Meng H, Li Ch, Chen B, Lei Zh (2016) Effect of Quaternization on Structure and Adsorptivity of Hyper Cross-Linked Poly(vinyl imidazole) for Thiohenic Sulfurs in Model Oil. Ind Eng Chem Res 55(29):8079–8086

    Article  CAS  Google Scholar 

  9. Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: An update. Prog Polym Sci 38(7):1009–1036

    Article  CAS  Google Scholar 

  10. Mecerreyes D (2011) Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36(12):1629–1648

    Article  CAS  Google Scholar 

  11. Wilke A, Yuan JY, Antonietti M (2012) Enhanced carbon dioxide adsorption by a mesoporous poly(ionic liquid). Weber J ACS Macro Lett 1:1028–1031

    Article  CAS  Google Scholar 

  12. Tang J, Shen Y, Radosz M, Sun W (2009) Isothermal carbon dioxide sorption in poly(ionic liquid)s. Ind Eng Chem Res 48:9113–9118

    Article  CAS  Google Scholar 

  13. Tang J, Tang H, Sun W, Plancher H, Radosz M, Shen Y (2005) Poly(ionic liquid)s: A new material with enhanced and fast CO2 absorption. Chem Commun 26:3325–3327

    Google Scholar 

  14. Tang J, Tang H, Sun W (2005) Low-pressure CO2 sorption in ammonium-based poly(ionic liquid)s. Polymer 46:12460–12467

    Article  CAS  Google Scholar 

  15. Yu G, Li Q, Li N, Man Z, Pu C, Asumana C, Chen X (2014) Synthesis of new crosslinked porous ammonium-based poly(ionic liquid) and application in CO2 adsorption. Polym Eng Sci 54:59–63

    Article  CAS  Google Scholar 

  16. Lim JY, Lee JH, Park MS, Kim JH (2019) Hybrid membranes based on ionic-liquid-functionalized poly (vinyl benzene chloride) beads for CO2 capture. J Memb Sci 572:365–373

    Article  CAS  Google Scholar 

  17. Shahrom MSR, Wilfred CD, Farlane DRM, Vijayraghavan R, Chong FK (2019) Amino acid based poly (ionic liquid) materials for CO2 capture: Effect of anion. J Mol Liq 276:644–652

    Article  CAS  Google Scholar 

  18. Blasig A, Tang J, Hu X, Shen Y, Radosz M (2007) Magnetic suspension balance study of carbon dioxide solubility in ammonium-based polymerized ionic liquids: Poly(p-vinylbenzyltrimethyl ammonium tetrafluoroborate) and poly([2-(methacryloyloxy)ethyl] trimethyl ammonium tetrafluoroborate). Fluid Phase Equilib 256:75–80

    Article  CAS  Google Scholar 

  19. Tang H, Tang J, Ding S, Radosz M (2005) Shen Y (2005) Atom transfer radical polymerization of styrenic ionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids. J Polym Sci Part A: Polym Chem 43:1432–1443

    Article  CAS  Google Scholar 

  20. Tang J, Tang H, Sun W, Radosz M, Shen Y (2005) Atom transfer radical polymerization of styrenic ionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids. J Polym Sci Part A: Polym Chem 22:5477–5489

    Article  CAS  Google Scholar 

  21. Tang J, Sun W, Tang H, Radosz M, Shen Y (2005) Enhanced CO2 Absorption of Poly(ionic liquid)s. Macromolecules 38(6):2037–2039

    Article  CAS  Google Scholar 

  22. Rana H, Wang J, Abdeltawab AA, Chena X, Yua G, Yu QY (2017) Synthesis of polymeric ionic liquids material and application in CO2 adsorption. J Eng Chem 26(5):909–918

    Google Scholar 

  23. Privalova EI, Karjalainen E, Nurmi M, Mki-Arvela P, Ernen K, Tenhu H, Yu MD, Mikkol JP (2013) Imidazolium-Based Poly(ionic liquid)s as New Alternatives for CO2 Capture. Chemsuschem 6(8):1500–1509

    Article  CAS  PubMed  Google Scholar 

  24. Amajjahe S, Ritter H (2008) Anion Complexation of Vinylimidazolium Salts and Its Influence on Polymerization. Macromolecules 41:716–718

    Article  CAS  Google Scholar 

  25. Muldoon MJ, Gordon CM (2004) Synthesis of gel-type polymer beads from ionic liquid monomers, J. Polym. Sci. Part A: Polym Chem 42:3865–3869

    Article  CAS  Google Scholar 

  26. Mori H, Yahagi M, Endo T (2009) RAFT Polymerization of N-Vinylimidazolium Salts and Synthesis of Thermoresponsive Ionic Liquid Block Copolymers. Macromolecules 42:8082–8092

    Article  CAS  Google Scholar 

  27. Oliveira NS, Oliveira J, Gomes T, Ferreira A, Dorgan J, Marrucho IM (2004) Fluid Phase Equilib I M 222:317–324

    Article  CAS  Google Scholar 

  28. Gomes MTSR, Nogueira PST, Peira JA, Sens OB (2000) Gas sorption in poly(lactic acid) and packaging materials. Actuators B: Chem 68:218–222

    Article  CAS  Google Scholar 

  29. Zhao Y, Du X, Wang X, He J, Yu Y, Sens HH (2010) Effects of F doping on TiO2 acidic sites and their application in QCM based gas sensors. Sens, Actuators B: Chem 151:205–211

    Article  CAS  Google Scholar 

  30. Mecea VM (1994) Loaded vibrating quartz sensors. Sens Actuat A 40:1–27

    Article  CAS  Google Scholar 

  31. Mehrdad A, Noorani N (2019) Permeability behavior of polyvinyl chloride-ionic liquid ionomer for CO2/CH4 separation. Sep Purif Technol 226:138–145

    Article  CAS  Google Scholar 

  32. Mehrdad A, Noorani N (2019) Study of CO2 adsorption onto poly(1–vinylimidazole) using quartz crystal microbalance and density functional theory methods. J Mol Liq 291:111–288

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala PY, Morokuma K, Voth G A, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui QAG, Baboul S, Clifford J, Cioslowski BB, Stefanov G, Liu A, Liashenko P, Piskorz Komaromi I, Martin RL, Fox DJ, Keith T, Laham A, Peng CY, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople JA (2003) Gaussian 03. Revision B.03. Gaussian, Inc., Pittsburgh.

  34. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  36. Mehrdad A, Noorani N (2020) CO2 solubility in some amino acid-based ionic liquids: Measurement, correlation and DFT studies. Fluid Phase Equilib 517:112591

    Article  CAS  Google Scholar 

  37. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1995) NBO 3.0 program manual. Gaussian Inc, Pittsburgh.

  38. Lin J, Wang L (2009) Comparison between linear and non-linear forms of pseudo first order and pseudo-second-order sorption kinetic models for the removal of methylene blue by activated carbon. Front Environ Sci Eng China 3:320–324

    Article  CAS  Google Scholar 

  39. Wong A, de Oliveira FM, Tarley CRT, Sotomayor MDPT (2016) Study on the crosslinked molecularly imprinted poly(methacrylic acid) and poly(acrylic acid) towards selective sorption of Diuron. React Funct Polym 100:26–36

    Article  CAS  Google Scholar 

  40. Plazinski W, Rudzinski W, Plazinska A (2009) Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv Coll Inter Sci 152:2–13

    Article  CAS  Google Scholar 

  41. Bhavsar RS, Kumbharkar SC, Kharul UK (2014) Investigation of gas permeation properties of film forming polymeric ionic liquids (PILs) based on polybenzimidazoles. J Memb Sci 470:494–503

    Article  CAS  Google Scholar 

  42. Tsujita Y (2003) Gas sorption and permeation of glassy polymers with microvoids. Prog Polym Sci 28:1377–1401

    Article  CAS  Google Scholar 

  43. Kanehashi S, Nagai K (2005) Analysis of dual-mode model parameters for gas sorption in glassy polymers. J Membr Sci 253:117–138

    Article  CAS  Google Scholar 

  44. Islam MN, Zhou W, Honda T, Tanaka K, Kita H, Okamoto K (2005) Preparation and gas separation performance of flexible pyrolytic membranes by low-temperature pyrolysis of sulfonated polyimides. J Membr Sci 261:17–26

    Article  CAS  Google Scholar 

  45. Gallardo-Fuentesa S, Contrerasa R, Isaacsb M, Honoresb J, Quezadab D, Landaetab E, Ormazábal R (2016) On the mechanism of CO2 electro-cycloaddition to propylene oxides. J CO2 Util 16:114–120

    Article  CAS  Google Scholar 

  46. Kuban P, Janos P, Kuban V (1998) Gas diffusion-flow injection determination of free and total sulfur dioxide in wines by conductometry. Czech Chem Commun 63:770–782

    Article  CAS  Google Scholar 

  47. Bhavsar SR, Kumbharkar SC, Kharu UK (2012) Polymeric ionic liquids (PILs): Effect of anion variation on their CO2 sorption. J Membr Sci 389:305–315

    Article  CAS  Google Scholar 

  48. Wang C, Luo X, Luo H, Jiang D, Li H, Dai S (2011) Tuning the Basicity of Ionic Liquids for Equimolar CO2 Capture. Angew Chem 50:4918–4922

    Article  CAS  Google Scholar 

  49. Erhayem M, Al-Tohami F, Mohamed RK, Am A (2015) Isotherm, kinetic and thermodynamic studies for the sorption of mercury (II) onto activated carbon from rosmarinus officinalis leaves. J Anal Chem 6:1–10

    Article  CAS  Google Scholar 

  50. Rashidi NA, Yusup S, Borhan A (2016) Isotherm and thermodynamic analysis of carbon dioxide on activated carbon. Procedia Eng 148:630–637

    Article  CAS  Google Scholar 

  51. Dada AO, Olalekan A, Olatunya A, Dada O (2012) Temkin and dubinin–radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. J Appl Chem 3:38–45

    Google Scholar 

  52. Subash chandrabose S, Krishnana AR, Saleem H, Paramashwari R, Sundaraganesan N, Thanikachalam V, Maikandan G (2010) Vibrational spectroscopic study and NBO analysis on bis(4-amino-5-mercapto-1,2,4-triazol-3-yl) methane using DFT method. Spectrochim Acta 77:877–884

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank for financial support as grant No: SAD/870-970307 from University of Tabriz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narmin Noorani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 430 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noorani, N., Mehrdad, A. CO2 adsorption onto 1-butyl-3-vinylimidazolium based poly(ionic liquid)s: experimental and theoretical studies. J Polym Res 28, 346 (2021). https://doi.org/10.1007/s10965-021-02695-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02695-8

Keywords

Navigation