Skip to main content
Log in

Effect of Cooling Rate on the Phase Formation of AlCoCrFeNi High-Entropy Alloy

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

High-entropy alloys have received significant attention because of remarkable structural properties exhibited by certain alloy compositions. However, these properties are strongly correlated to the crystallographic phase transformations that are endured during the synthesis of these alloys. Using molecular dynamics simulations, we examine how the cooling rates exerted on the alloy melt during synthesis impact the crystallization (and glass formation) of equiatomic AlCoCrFeNi high-entropy alloy. An increased cooling rate contributes to severe undercooling of the alloy, reducing the crystallization temperatures and promotes phase transformations. We predict a critical cooling rate of 2.5 × 1010 K/s beyond which the alloy tends to solidify into an amorphous phase. Our results reveal that higher cooling rates exert severe lattice distortion and significantly enhance the structural properties due to increase in dislocation density and deformation by twinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218.

    Article  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsaua, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.

    Article  Google Scholar 

  3. M.-H. Tsai, and J.-W. Yeh, High-Entropy Alloys: A Critical Review, Mater. Res. Lett., 2014, 2(3), p 107–123.

    Article  Google Scholar 

  4. D.B. Miracle, and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448–511.

    Article  ADS  Google Scholar 

  5. Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, and H.C. Shih, Microstructure, and Electrochemical Properties of High Entropy Alloys: A Comparison with Type-304 Stainless Steel, Corros. Sci., 2005, 47(9), p 2257–2279.

    Article  Google Scholar 

  6. C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, and S.Y. Chang, Mechanical Performance of the AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements, Metall. Mater. Trans. A, 2005, 36(5), p 1263–1271.

    Article  Google Scholar 

  7. G.Y. Ke, S.K. Chen, T. Hsu, and J.W. Yeh, FCC and BCC Equivalents in as-Cast Solid Solutions of AlxCo yCrzCu0.5FevNiw HIGH-ENTROPY ALLOYS, Ann. Chim. Sci. Des Mater., 2006, 31(6), p 669–683.

    Article  Google Scholar 

  8. A. Roy, T. Babuska, B. Krick, and G. Balasubramanian, Machine Learned Feature Identification for Predicting Phase and Young’s Modulus of Low-, Medium- and High-Entropy Alloys, Scr. Mater., 2020, 185, p 152–158.

    Article  Google Scholar 

  9. M. Gianelle, A. Kundu, K.P. Anderson, A. Roy, G. Balasubramanian, and H.M. Chan, A Novel Ceramic Derived Processing Route for Multi-principal Element Alloys, Mater. Sci. Eng. A, 2020, 793, p 139892.

    Article  Google Scholar 

  10. S.A. Kube, and J. Schroers, Metastability in High Entropy Alloys, Scr. Mater., 2020, 186, p 392–400.

    Article  Google Scholar 

  11. J.M. Rickman, H.M. Chan, M.P. Harmer, J.A. Smeltzer, C.J. Marvel, A. Roy, and G. Balasubramanian, Materials Informatics for the Screening of Multi-principal Elements and High-Entropy Alloys, Nat. Commun., 2019, 10, p 1–10.

    Article  Google Scholar 

  12. A. Roy, P. Sreeramagiri, T. Babuska, B. Krick, P.K. Ray, and G. Balasubramanian, Lattice Distortion as an Estimator of Solid Solution Strengthening in High-Entropy Alloys, Mater. Charact., 2021, 172, p 110877.

    Article  Google Scholar 

  13. A. Roy, and G. Balasubramanian, Predictive Descriptors in Machine Learning and Data-Enabled Explorations of High-Entropy Alloys, Comput. Mater. Sci., 2021, 193, p 110381.

    Article  Google Scholar 

  14. S.A. Kube, S. Sohn, D. Uhl, A. Datye, A. Mehta, and J. Schroers, Phase Selection Motifs in High Entropy Alloys Revealed Through Combinatorial Methods: Large Atomic Size Difference Favors BCC over FCC, Acta Mater., 2019, 166, p 677–686.

    Article  ADS  Google Scholar 

  15. E.J. Pickering, and N.G. Jones, High-Entropy Alloys: A Critical Assessment of Their Founding Principles and Future Prospects, Int. Mater. Rev., 2016, 61(3), p 183–202.

    Article  Google Scholar 

  16. L. Xie, P. Brault, A.-L.L. Thomann, and J.-M.M. Bauchire, AlCoCrCuFeNi High Entropy Alloy Cluster Growth and Annealing on Silicon: A Classical Molecular Dynamics Simulation Study, Appl. Surf. Sci., 2013, 285(PARTB), p 810–816.

    Article  ADS  Google Scholar 

  17. L. Ma, Z. Gao, S. Hu, Z. Zeng, J. Xu, and J. Wang, Effect of Cooling Rate on Microstructure and Mechanical Properties of Al0.3CoCrFeNi High-Entropy Alloy, Mater. Res. Express, 2019, 6(5), p 056540.

    Article  ADS  Google Scholar 

  18. P. Singh, A.V. Smirnov, and D.D. Johnson, Atomic Short-Range Order and Incipient Long-Range Order in High-Entropy Alloys, Phys. Rev. B, 2015, 91, p 224204.

    Article  ADS  Google Scholar 

  19. C. Li, M. Zhao, J.C. Li, and Q. Jiang, B2 Structure of High-Entropy Alloys with Addition of Al, J. Appl. Phys., 2008, 104(11), p 113504.

    Article  ADS  Google Scholar 

  20. S. Feng, L. Li, K.C. Chan, L. Zhao, S. Pan, L. Wang, and R. Liu, Tuning Deformation Behavior of Cu0.5CoNiCrAl High-Entropy Alloy via Cooling Rate Gradient: An Atomistic Study, Intermetallics, 2019, 112, p 106553.

    Article  Google Scholar 

  21. J. Li, H. Chen, S. Li, Q. Fang, Y. Liu, L. Liang, H. Wu, and P.K. Liaw, Tuning the Mechanical Behavior of High-Entropy Alloys via Controlling Cooling Rates, Mater. Sci. Eng. A, 2019, 760, p 359–365.

    Article  Google Scholar 

  22. D. Molnár, Á. Vida, S. Huang, and N.Q. Chinh, The Effect of Cooling Rate on the Microstructure and Mechanical Properties of NiCoFeCrGa High-Entropy Alloy, J. Mater. Sci., 2019, 54(6), p 5074–5082.

    Article  ADS  Google Scholar 

  23. X.D. Xu, S. Guo, T.G. Nieh, C.T. Liu, A. Hirata, and M.W. Chen, Effects of Mixing Enthalpy and Cooling Rate on Phase Formation of AlxCoCrCuFeNi High-Entropy Alloys, Materialia, 2019, 6, p 100292.

    Article  Google Scholar 

  24. C. He, W. Yu, Y. Li, Z. Wang, D. Wu, and G. Xu, Relationship Between Cooling Rate, Microstructure Evolution, and Performance Improvement of an Al-Cu Alloy Prepared Using Different Methods, Mater. Res. Express, 2020, 7(11), p 116501.

    Article  ADS  Google Scholar 

  25. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 1995, 117(1), p 1–19.

    Article  ADS  MATH  Google Scholar 

  26. A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO: The Open Visualization Tool, Model. Simul. Mater. Sci. Eng., 2009, 18(1), p 015012.

    Article  ADS  MathSciNet  Google Scholar 

  27. G. Qin, W. Xue, C. Fan, R. Chen, L. Wang, Y. Su, H. Ding, and J. Guo, Effect of Co Content on Phase Formation and Mechanical Properties of (AlCoCrFeNi)100-Co High-Entropy Alloys, Mater. Sci. Eng. A, 2018, 710, p 200–205.

    Article  Google Scholar 

  28. X.W. Zhou, R.A. Johnson, and H.N.G. Wadley, Misfit-Energy-Increasing Dislocations in Vapor-Deposited CoFe/NiFe Multilayers, Phys. Rev. B, 2004, 69(14), p 144113.

    Article  ADS  Google Scholar 

  29. Z. Lin, R.A. Johnson, and L.V. Zhigilei, Computational Study of the Generation of Crystal Defects in a bcc Metal Target Irradiated by Short Laser Pulses, Phys. Rev. B, 2008, 77(21), p 21410.

    Article  Google Scholar 

  30. A. Sharma, P. Singh, D.D. Johnson, P.K. Liaw, and G. Balasubramanian, Atomistic Clustering-Ordering and High-Strain Deformation of an Al0.1CrCoFeNi High-Entropy Alloy, Sci. Rep., 2016, 6(1), p 31028.

    Article  ADS  Google Scholar 

  31. P. Singh, A. Sharma, A.V. Smirnov, M.S. Diallo, P.K. Ray, G. Balasubramanian, and D.D. Johnson, Design of High-Strength Refractory Complex Solid-Solution Alloys, Npj Comput. Mater., 2018, 4(1), p 16.

    Article  ADS  Google Scholar 

  32. A. Roy, J. Munshi, and G. Balasubramanian, Low Energy Atomic Traps Sluggardize the Diffusion in Compositionally Complex Refractory Alloys, Intermetallics, 2021, 131, p 107106.

    Article  Google Scholar 

  33. D. Faken, and H. Jónsson, Systematic Analysis of Local Atomic Structure Combined with 3D Computer Graphics, Comput. Mater. Sci., 1994, 2(2), p 279–286.

    Article  Google Scholar 

  34. S.P. Coleman, D.E. Spearot, and L. Capolungo, Virtual Diffraction Analysis of Ni [010] Symmetric Tilt Grain Boundaries, Model. Simul. Mater. Sci. Eng., 2013, 21, p 055020.

    Article  ADS  Google Scholar 

  35. D. Karlsson, G. Lindwall, A. Lundbäck, M. Amnebrink, M. Boström, L. Riekehr, M. Schuisky, M. Sahlberg, and U. Jansson, Binder Jetting of the AlCoCrFeNi Alloy, Addit. Manuf., 2019, 27, p 72–79.

    Google Scholar 

  36. D. Karlsson, A. Marshal, F. Johansson, M. Schuisky, M. Sahlberg, J.M. Schneider, and U. Jansson, Elemental Segregation in an AlCoCrFeNi High-Entropy Alloy: A Comparison Between Selective Laser Melting and Induction Melting, J. Alloys Compd., 2019, 784, p 195–203.

    Article  Google Scholar 

  37. L. Zhou, M.K. Miller, P. Lu, L. Ke, R. Skomski, H. Dillon, Q. Xing, A. Palasyuk, M.R. McCartney, D.J. Smith, S. Constantinides, R.W. McCallum, I.E. Anderson, V. Antropov, and M.J. Kramer, Architecture and Magnetism of Alnico, Acta Mater., 2014, 74, p 224–233.

    Article  ADS  Google Scholar 

  38. R. LeSar, Introduction to Computational Materials Science. Cambridge University Press, Cambridge, 2013.

    Book  Google Scholar 

  39. N.W. Ashcroft, N.D. Mermin et al., Solid State Physics. Holt, Rinehart and Winston, New York, 1976.

    MATH  Google Scholar 

  40. A. Sharma, S.A. Deshmukh, P.K. Liaw, and G. Balasubramanian, Crystallization Kinetics in AlxCrCoFeNi (0 ≤ x ≤ 40) High-Entropy Alloys, Scr. Mater., 2017, 141, p 54–57.

    Article  Google Scholar 

  41. L.-L. Zhou, R.-S. Liu, Z.-A. Tian, H.-R. Liu, Z.-Y. Hou, and P. Peng, Crystallization Characteristics in Supercooled Liquid Zinc During Isothermal Relaxation: A Molecular Dynamics Simulation Study, Sci. Rep., 2016, 6(1), p 31653.

    Article  ADS  Google Scholar 

  42. A. Mahata, M.A. Zaeem, and M.I. Baskes, Understanding Homogeneous Nucleation in Solidification of Aluminum by Molecular Dynamics Simulations, Model. Simul. Mater. Sci. Eng., 2018, 26(2), p 025007.

    Article  ADS  Google Scholar 

  43. D.V. Louzguine-Luzgin, and A.I. Bazlov, Crystallization of FCC and BCC Liquid Metals Studied by Molecular Dynamics Simulation, Metals (Basel), 2020, 10(11), p 1532.

    Article  Google Scholar 

  44. D. Nguyen-Trong, K. Pham-Huu, and P. Nguyen-Tri, Simulation on the Factors Affecting the Crystallization Process of FeNi Alloy by Molecular Dynamics, ACS Omega, 2019, 4(11), p 14605–14612.

    Article  Google Scholar 

  45. Y. Shibuta, S. Sakane, E. Miyoshi, S. Okita, T. Takaki, and M. Ohno, Heterogeneity in Homogeneous Nucleation from Billion-Atom Molecular Dynamics Simulation of Solidification of Pure Metal, Nat. Commun., 2017, 8(1), p 10.

    Article  ADS  Google Scholar 

  46. T. Fujinaga, and Y. Shibuta, Molecular Dynamics Simulation of Athermal Heterogeneous Nucleation of Solidification, Comput. Mater. Sci., 2019, 164, p 74–81.

    Article  Google Scholar 

  47. M. Papanikolaou, K. Salonitis, M. Jolly, and M. Frank, Large-Scale Molecular Dynamics Simulations of Homogeneous Nucleation of Pure Aluminium, Metals (Basel), 2019, 9(11), p 1217.

    Article  Google Scholar 

  48. W.D. Callister Jr., and D.G. Rethwisch, Materials Science and Engineering: An Introduction, 10th edn. Wiley, London, 2018.

    Google Scholar 

  49. K.K. Bejagam, C.N. Iverson, B.L. Marrone, and G. Pilania, Molecular Dynamics Simulations for Glass Transition Temperature Predictions of Polyhydroxyalkanoate Biopolymers, Phys. Chem. Chem. Phys., 2020, 22(32), p 17880–17889.

    Article  Google Scholar 

  50. R.K. Biswas, P. Khan, S. Mukherjee, A.K. Mukhopadhyay, J. Ghosh, and K. Muraleedharan, Study of Short-Range Structure of Amorphous Silica from PDF Using Ag Radiation in Laboratory XRD System, RAMAN and NEXAFS, J. Non. Cryst. Solids, 2018, 488, p 1–9.

    Article  ADS  Google Scholar 

  51. T. Fujieda, H. Shiratori, K. Kuwabara, T. Kato, K. Yamanaka, Y. Koizumi, and A. Chiba, First Demonstration of Promising Selective Electron Beam Melting Method for Utilizing High-Entropy Alloys as Engineering Materials, Mater. Lett., 2015, 159, p 12–15.

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Science Foundation (NSF) through the awards # CMMI-1944040 and OAC-2019035. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors’ and do not necessarily reflect the views of the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh Balasubramanian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Phase Equilibria and Diffusion on the Thermodynamics and Kinetics of High-Entropy Alloys. This issue was organized by Dr. Michael Gao, National Energy Technology Laboratory; Dr. Ursula Kattner, NIST; Prof. Raymundo Arroyave, Texas A&M University; and the late Dr. John Morral, The Ohio State University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreeramagiri, P., Roy, A. & Balasubramanian, G. Effect of Cooling Rate on the Phase Formation of AlCoCrFeNi High-Entropy Alloy. J. Phase Equilib. Diffus. 42, 772–780 (2021). https://doi.org/10.1007/s11669-021-00918-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00918-5

Keywords

Navigation