Skip to main content

Advertisement

Log in

The Therapeutic Role of Slit2 in Anti-fibrosis, Anti-inflammation and Anti-oxidative Stress in Rats with Coronary Heart Disease

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

To investigate the efficacy of Slit2 in the rats with coronary heart disease (CHD). CHD model were constructed by feeding high-fat food and injecting with pituitrin in rat, followed by recombinant Slit2 treatment, and then the cardiac function was evaluated by echocardiography, and the indicators concerning the cardiomyocyte injury markers and lipoprotein status and oxidative stress were measured. The Slit2 expression in the heart tissues was identified by immunofluorescence. Enzyme-linked immunosorbent assay (ELISA) was carried out to detect inflammatory cytokines, H2DCFDA staining to determine the ROS generation in heart tissues, Masson trichrome staining to observe myocardial fibrosis, and qRT-PCR and Western blotting to detect gene and protein expressions. Slit2 decreased the levels of LDH, CK-MB, cTnI, TG, TC and LDL-C and increased HDL-C level in CHD rats. In the normal heart tissues, Slit2 expression was significantly lower in cardiomyocytes than cardiac fibroblasts. Furthermore, the expressions of VCAM-1, ICAM-1, fibronectin and TGF-β1 were increased in the heart tissues of CHD rats with the obvious myocardial fibrosis, which were dose-dependently reversed by recombinant Slit2. In addition, recombinant Slit2 also dose-dependently increased the activity of NO, SOD, CAT and GSH-Px, and decreased TNF-α, IL-6, MCP-1, MDA and ROS in CHD rats. Slit2 was downregulated in myocardial tissue and plasma of CHD rats. Recombinant Slit2, by regulating the level of blood lipid, can relieve the myocardial fibrosis, inflammation and oxidative stress in CHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tu, S., Xiao, F., Min, X., Chen, H., Fan, X., & Cao, K. (2018). Catechin attenuates coronary heart disease in a rat model by inhibiting inflammation. Cardiovascular Toxicology, 18, 393–399.

    Article  CAS  PubMed  Google Scholar 

  2. Heusch, G., Schulz, R., & Erbel, R. (2003). Inflammatory markers in coronary heart disease: coronary vascular versus myocardial origin? Circulation, 108, e4.

    Article  PubMed  Google Scholar 

  3. Nusslein-Volhard, C., Wieschaus, E., & Kluding, H. (1984). Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster: I. Zygotic loci on the second chromosome. Wilehm Roux’s Archives of Developmental Biology, 193, 267–282.

    Article  CAS  PubMed  Google Scholar 

  4. Qian, L., Liu, J., & Bodmer, R. (2005). Slit and Robo control cardiac cell polarity and morphogenesis. Current Biology, 15, 2271–2278.

    Article  CAS  PubMed  Google Scholar 

  5. Fish, J. E., Wythe, J. D., Xiao, T., Bruneau, B. G., Stainier, D. Y., Srivastava, D., & Woo, S. (2011). A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish. Development, 138, 1409–1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Medioni, C., Bertrand, N., Mesbah, K., Hudry, B., Dupays, L., Wolstein, O., Washkowitz, A. J., Papaioannou, V. E., Mohun, T. J., Harvey, R. P., & Zaffran, S. (2010). Expression of Slit and Robo genes in the developing mouse heart. Developmental Dynamics, 239, 3303–3311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mommersteeg, M. T., Andrews, W. D., Ypsilanti, A. R., Zelina, P., Yeh, M. L., Norden, J., Kispert, A., Chedotal, A., Christoffels, V. M., & Parnavelas, J. G. (2013). Slit-roundabout signaling regulates the development of the cardiac systemic venous return and pericardium. Circulation Research, 112, 465–475.

    Article  CAS  PubMed  Google Scholar 

  8. Calmont, A., Ivins, S., Van Bueren, K. L., Papangeli, I., Kyriakopoulou, V., Andrews, W. D., Martin, J. F., Moon, A. M., Illingworth, E. A., Basson, M. A., & Scambler, P. J. (2009). Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating Gbx2 expression in the pharyngeal ectoderm. Development, 136, 3173–3183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu, H., Gao, G., Jiang, L., Guo, L., Lin, M., Jiao, X., Jia, W., & Huang, J. (2013). Decreased expression of miR-218 is associated with poor prognosis in patients with colorectal cancer. International Journal of Clinical and Experimental Pathology, 6, 2904–2911.

    PubMed  PubMed Central  Google Scholar 

  10. Nguyen Ba-Charvet, K. T., Brose, K., Ma, L., Wang, K. H., Marillat, V., Sotelo, C., Tessier-Lavigne, M., & Chedotal, A. (2001). Diversity and specificity of actions of Slit2 proteolytic fragments in axon guidance. Journal of Neuroscience, 21, 4281–4289.

    Article  CAS  PubMed  Google Scholar 

  11. Katoh, Y., & Katoh, M. (2005). Comparative genomics on SLIT1, SLIT2, and SLIT3 orthologs. Oncology Reports, 14, 1351–1355.

    Article  CAS  PubMed  Google Scholar 

  12. Pilling, D., Zheng, Z., Vakil, V., & Gomer, R. H. (2014). Fibroblasts secrete Slit2 to inhibit fibrocyte differentiation and fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 111, 18291–18296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang, J., Lan, T., Li, C., Ji, X., Zheng, L., Gou, H., Ou, Y., Wu, T., Qi, C., Zhang, Q., Li, J., Gu, Q., Wen, D., Cao, L., Qiao, L., Ding, Y., & Wang, L. (2015). Activation of Slit2-Robo1 signaling promotes liver fibrosis. Journal of Hepatology, 63, 1413–1420.

    Article  CAS  PubMed  Google Scholar 

  14. Guan, H., Zu, G., Xie, Y., Tang, H., Johnson, M., Xu, X., Kevil, C., Xiong, W. C., Elmets, C., Rao, Y., Wu, J. Y., & Xu, H. (2003). Neuronal repellent Slit2 inhibits dendritic cell migration and the development of immune responses. The Journal of Immunology, 171, 6519–6526.

    Article  CAS  PubMed  Google Scholar 

  15. Tole, S., Mukovozov, I. M., Huang, Y. W., Magalhaes, M. A., Yan, M., Crow, M. R., Liu, G. Y., Sun, C. X., Durocher, Y., Glogauer, M., & Robinson, L. A. (2009). The axonal repellent, Slit2, inhibits directional migration of circulating neutrophils. Journal of Leukocyte Biology, 86, 1403–1415.

    Article  CAS  PubMed  Google Scholar 

  16. Chaturvedi, S., Yuen, D. A., Bajwa, A., Huang, Y. W., Sokollik, C., Huang, L., Lam, G. Y., Tole, S., Liu, G. Y., Pan, J., Chan, L., Sokolskyy, Y., Puthia, M., Godaly, G., John, R., Wang, C., Lee, W. L., Brumell, J. H., Okusa, M. D., & Robinson, L. A. (2013). Slit2 prevents neutrophil recruitment and renal ischemia-reperfusion injury. Journal of the American Society of Nephrology, 24, 1274–1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dallol, A., Krex, D., Hesson, L., Eng, C., Maher, E. R., & Latif, F. (2003). Frequent epigenetic inactivation of the SLIT2 gene in gliomas. Oncogene, 22, 4611–4616.

    Article  CAS  PubMed  Google Scholar 

  18. Kim, H. K., Zhang, H., Li, H., Wu, T. T., Swisher, S., He, D., Wu, L., Xu, J., Elmets, C. A., Athar, M., Xu, X. C., & Xu, H. (2008). Slit2 inhibits growth and metastasis of fibrosarcoma and squamous cell carcinoma. Neoplasia, 10, 1411–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, G. X., Wang, H. Y., Liu, T., Yang, M. T., Zhou, Z. Y., & Feng, G. (2013). Myocardial Slit2/Robo4 expression and impact of exogenous Slit2 on proliferation and migration of cardiac microvascular endothelial cells. Zhonghua Xin Xue Guan Bing Za Zhi, 41, 1034–1039.

    CAS  PubMed  Google Scholar 

  20. Li, X., Zheng, S., Tan, W., Chen, H., Li, X., Wu, J., Luo, T., Ren, X., Pyle, W. G., Wang, L., Backx, P. H., Huang, R., & Yang, F. H. (2020). slit2 protects hearts against ischemia-reperfusion injury by inhibiting inflammatory responses and maintaining myofilament contractile properties. Frontiers in Physiology, 11, 228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carbone, L. (2012). Pain management standards in the Guide for the Care and Use of Laboratory Animals. Journal of the American Association for Laboratory Animal Science, 51, 322–328.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Goth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196, 143–151.

    Article  CAS  Google Scholar 

  23. Sazuka, Y., Tanizawa, H., & Takino, Y. (1989). Effect of adriamycin on the activities of superoxide dismutase, glutathione peroxidase and catalase in tissues of mice. Japanese Journal of Cancer Research, 80, 89–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu, J., Zhou, X., Deng, Q., Huang, Q., Yang, J., & Huang, F. (2011). Rapeseed oil fortified with micronutrients reduces atherosclerosis risk factors in rats fed a high-fat diet. Lipids in Health and Disease, 10, 96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sung, P. H., Sun, C. K., Ko, S. F., Chang, L. T., Sheu, J. J., Lee, F. Y., Wu, C. J., Chua, S., & Yip, H. K. (2009). Impact of hyperglycemic control on left ventricular myocardium. A molecular and cellular basic study in a diabetic rat model. International Heart Journal, 50, 191–206.

    Article  CAS  PubMed  Google Scholar 

  26. Chang, H., Wang, Q., Shi, T., Huo, K., Li, C., Zhang, Q., Wang, G., Wang, Y., Tang, B., Wang, W., & Wang, Y. (2016). Effect of DanQi Pill on PPARalpha, lipid disorders and arachidonic acid pathway in rat model of coronary heart disease. BMC Complementary and Alternative Medicine, 16, 103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Shu, J., Huang, R., Tian, Y., Liu, Y., Zhu, R., & Shi, G. (2020). Andrographolide protects against endothelial dysfunction and inflammatory response in rats with coronary heart disease by regulating PPAR and NF-kappaB signaling pathways. Annals of Palliative Medicine, 9, 1965–1975.

    Article  PubMed  Google Scholar 

  28. Steven, S., Frenis, K., Oelze, M., Kalinovic, S., Kuntic, M., Bayo Jimenez, M. T., Vujacic-Mirski, K., Helmstadter, J., Kroller-Schon, S., Munzel, T., & Daiber, A. (2019). Vascular inflammation and oxidative stress: major triggers for cardiovascular disease. Oxidative Medicine and Cellular Longevity, 2019, 7092151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Lin, Y., Dan, H., & Lu, J. (2020). Overexpression of microRNA-136-3p alleviates myocardial injury in coronary artery disease via the Rho A/ROCK signaling pathway. Kidney & Blood Pressure Research, 45, 477–496.

    Article  CAS  Google Scholar 

  30. Li, X., Lu, Y., Sun, Y., & Zhang, Q. (2015). Effect of curcumin on permeability of coronary artery and expression of related proteins in rat coronary atherosclerosis heart disease model. International Journal of Clinical and Experimental Pathology, 8, 7247–7253.

    PubMed  PubMed Central  Google Scholar 

  31. Yusuf, B., Mukovozov, I., Patel, S., Huang, Y. W., Liu, G. Y., Reddy, E. C., Skrtic, M., Glogauer, M., & Robinson, L. A. (2021). The neurorepellent, Slit2, prevents macrophage lipid loading by inhibiting CD36-dependent binding and internalization of oxidized low-density lipoprotein. Science and Reports, 11, 3614.

    Article  CAS  Google Scholar 

  32. Lu, N., Du, Y., Li, H., Luo, Y., Ouyang, B., Chen, Y., Yang, Y., & Yang, L. (2018). Omega-6 fatty acids down-regulate matrix metalloproteinase expression in a coronary heart disease-induced rat model. International Journal of Experimental Pathology, 99, 210–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cappola, T., Li, M., Jing, H., Ky, B., Gilmore, J., Keating, B., Reilly, M., Syed, F., Matkovich, S., & Gerald Dorn, I. (2008). Abstract 4874: Large-scale candidate gene association with human heart failure. Circulation, 103, 530.

    Google Scholar 

  34. Moreira, R. S., Irigoyen, M., Sanches, T. R., Volpini, R. A., Camara, N. O., Malheiros, D. M., Shimizu, M. H., Seguro, A. C., & Andrade, L. (2014). Apolipoprotein A-I mimetic peptide 4F attenuates kidney injury, heart injury, and endothelial dysfunction in sepsis. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 307, R514-524.

    Article  CAS  PubMed  Google Scholar 

  35. Park, S. H., Sung, Y. Y., Jang, S., Nho, K. J., Choi, G. Y., & Kim, H. K. (2016). The Korean herbal medicine, Do In Seung Gi-Tang, attenuates atherosclerosis via AMPK in high-fat diet-induced ApoE(−/−) mice. BMC Complementary and Alternative Medicine, 16, 352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Yongming, P., Zhaowei, C., Yichao, M., Keyan, Z., Liang, C., Fangming, C., Xiaoping, X., Quanxin, M., & Minli, C. (2015). Involvement of peroxisome proliferator-activated receptors in cardiac and vascular remodeling in a novel minipig model of insulin resistance and atherosclerosis induced by consumption of a high-fat/cholesterol diet. Cardiovascular Diabetology, 14, 6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhao, H., Anand, A. R., & Ganju, R. K. (2014). Slit2-Robo4 pathway modulates lipopolysaccharide-induced endothelial inflammation and its expression is dysregulated during endotoxemia. Journal of Immunology, 192, 385–393.

    Article  CAS  Google Scholar 

  38. Mukovozov, I., Huang, Y. W., Zhang, Q., Liu, G. Y., Siu, A., Sokolskyy, Y., Patel, S., Hyduk, S. J., Kutryk, M. J., Cybulsky, M. I., & Robinson, L. A. (2015). The Neurorepellent Slit2 inhibits postadhesion stabilization of monocytes tethered to vascular endothelial cells. The Journal of Immunology, 195, 3334–3344.

    Article  CAS  PubMed  Google Scholar 

  39. Li, C., Yang, G., Lin, L., Xuan, Y., Yan, S., Ji, X., Song, F., Lu, M., & Lan, T. (2019). Slit2 signaling contributes to cholestatic fibrosis in mice by activation of hepatic stellate cells. Experimental Cell Research, 385, 111626.

    Article  CAS  PubMed  Google Scholar 

  40. Yuen, D. A., Huang, Y. W., Liu, G. Y., Patel, S., Fang, F., Zhou, J., Thai, K., Sidiqi, A., Szeto, S. G., Chan, L., Lu, M., He, X., John, R., Gilbert, R. E., Scholey, J. W., & Robinson, L. A. (2016). Recombinant N-terminal Slit2 inhibits TGF-beta-induced fibroblast activation and renal fibrosis. Journal of the American Society of Nephrology, 27, 2609–2615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou, X., Yao, Q., Sun, X., Gong, X., Yang, Y., Chen, C., & Shan, G. (2017). Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro. Experimental Cell Research, 352, 123–129.

    Article  CAS  PubMed  Google Scholar 

  42. Tajfard, M., Latiff, L. A., Rahimi, H. R., Mouhebati, M., Esmaeily, H., Taghipour, A., Mahdipour, E., Davari, H., Saghiri, Z., Hanachi, P., Ghayour Mobarhan, M., Ferns, G. A., & Azizian, M. (2014). Serum inflammatory cytokines and depression in coronary artery disease. Iranian Red Crescent Medical Journal, 16, e17111.

    PubMed  PubMed Central  Google Scholar 

  43. Kotur-Stevuljevic, J., Spasic, S., Jelic-Ivanovic, Z., Spasojevic-Kalimanovska, V., Stefanovic, A., Vujovic, A., Memon, L., & Kalimanovska-Ostric, D. (2008). PON1 status is influenced by oxidative stress and inflammation in coronary heart disease patients. Clinical Biochemistry, 41, 1067–1073.

    Article  CAS  PubMed  Google Scholar 

  44. Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M. C., & Rahu, N. (2016). Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxidative Medicine and Cellular Longevity, 2016, 7432797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Miniati, D. N., Lijkwan, M. A., Murata, S., Martens, J., Coleman, C. T., Hoyt, E. G., & Robbins, R. C. (2003). Effects of adenoviral up-regulation of bcl-2 on oxidative stress and graft coronary artery disease in rat heart transplants. Transplantation, 76, 382–386.

    Article  CAS  PubMed  Google Scholar 

  46. Yokota, T., Nomura, K., Nagashima, M., & Kamimura, N. (2016). Fucoidan alleviates high-fat diet-induced dyslipidemia and atherosclerosis in ApoE(shl) mice deficient in apolipoprotein E expression. The Journal of Nutritional Biochemistry, 32, 46–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Samuel S. W. Tay.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JW., Liu, HT. & Chen, L. The Therapeutic Role of Slit2 in Anti-fibrosis, Anti-inflammation and Anti-oxidative Stress in Rats with Coronary Heart Disease. Cardiovasc Toxicol 21, 973–983 (2021). https://doi.org/10.1007/s12012-021-09688-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09688-5

Keywords

Navigation