Skip to main content

Advertisement

Log in

Influences of Stent Design on In-Stent Restenosis and Major Cardiac Outcomes: A Scoping Review and Meta-Analysis

  • Review
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Thanks to the developments in implantable biomaterial technologies, invasive operating procedures, and widespread applications especially in vascular disease treatment, a milestone for interventional surgery was achieved with the introduction of vascular stents. Despite vascular stents providing a solution for embolisms, this technology includes various challenges, such as mechanical, electro-chemical complications, or in-stent restenosis (ISR) risks with long-term usage. Therefore, further development of biomaterial technologies is vital to overcome such risks and problems. For this purpose, recent research has focused mainly on the applications of surface modification techniques on biomaterials and vascular stents to increase their hemocompatibility. ISR risk has been reduced with the development and prevalent usage of the art technology stent designs of drug-eluting and biodegradable stents. Nevertheless, their problems have not been overcome completely. Furthermore, patients using drug-eluting stents are faced with further clinical challenges. Therefore, the bare metal stent, which is the first form of the vascular stent technology and includes the highest ISR risk, is still in common usage for vascular treatment applications. For this reason, further research is necessary to solve the remaining vital problems. In this scoping review, stent-based major cardiac events including ISR are analyzed depending on different designs and material selection in stent manufacturing. Recent and novel approaches to overcome such challenges are stated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Abraha, I., C. Romagnoli, A. Montedori, and R. Cirocchi. Thoracic stent graft versus surgery for thoracic aneurysm. Cochrane Database Syst. Rev. 2016. https://doi.org/10.1002/14651858.cd006796.pub2.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Adamovic, D., B. Ristic, and F. Zivic. Review of existing biomaterials—method of material selection for specific applications in orthopedics. In: Biomaterials in Clinical Practice. Cham: Springer, 2017, pp. 47–49.

  3. Adriaenssens, T., J. Dens, G. Ughi, J. Bennett, C. Dubois, P. Sinnaeve, et al. Optical coherence tomography study of healing characteristics of paclitaxel-eluting balloons vs. everolimus-eluting stents for in-stent restenosis: the SEDUCE (Safety and Efficacy of a Drug elUting balloon in Coronary artery rEstenosis) randomised clinical trial. EuroIntervention. 10:439–448, 2014.

    Article  PubMed  Google Scholar 

  4. Akdogan, G., and O. B. Istanbullu. Damar İçi Stentlerde Malzeme Seçiminin ve Tasarımının Restenoz ve Diğer Stent Kaynaklı Problemlere Etkileri, Stentlerin Ekonomideki Yeri (Bir Genel Derleme). Eur. J. Sci. Technol. 204–215, 2020.

  5. Alfonso, F., R. A. Byrne, F. Rivero, and A. Kastrati. Current treatment of in-stent restenosis. J. Am. Coll. Cardiol. 63:2659–2673, 2014.

    Article  PubMed  Google Scholar 

  6. Alfonso, F., M. J. Pérez-Vizcayno, A. Cárdenas, B. García Del Blanco, B. Seidelberger, A. Iñiguez, et al. A randomized comparison of drug-eluting balloon versus everolimus-eluting stent in patients with bare-metal stent-in-stent restenosis: the RIBS v clinical trial (restenosis intra-stent of bare metal stents: paclitaxel-eluting balloon vs. everolimus-eluting. J. Am. Coll. Cardiol. 63:1378–1386, 2014.

    Article  CAS  PubMed  Google Scholar 

  7. Alfonso, F., M. J. Pérez-Vizcayno, J. Dutary, J. Zueco, A. Cequier, A. García-Touchard, et al. Implantation of a drug-eluting stent with a different drug (switch strategy) in patients with drug-eluting stent restenosis: results from a prospective multicenter study (RIBS III [restenosis intra-stent: balloon angioplasty versus drug-eluting stent]). JACC Cardiovasc. Interv. 5:728–737, 2012.

    Article  PubMed  Google Scholar 

  8. Allain, J. P., and M. Echeverry-Rendón. Surface treatment of metallic biomaterials in contact with blood to enhance hemocompatibility. In: Hemocompatibility of Biomaterials for Clinical Applications Blood–Biomaterials Interactions. Amsterdam: Elsevier, 2018, pp. 279–326.

  9. Anderloni, A., A. Fugazza, L. Maroni, V. Ormando, R. Maselli, S. Carrara, et al. New biliary and pancreatic biodegradable stent placement: a single-center, prospective, pilot study (with video). Gastrointest. Endosc. 92:405–411, 2020. https://doi.org/10.1016/j.gie.2020.02.049.

    Article  PubMed  Google Scholar 

  10. Anwaruddin, S., A. T. Askari, H. Saudye, L. Batizy, P. L. Houghtaling, M. Alamoudi, et al. Characterization of post-operative risk associated with prior drug-eluting stent use. JACC Cardiovasc. Interv. 2:542–549, 2009. https://doi.org/10.1016/j.jcin.2009.03.014.

    Article  PubMed  Google Scholar 

  11. Arnous, S., N. Shakhshir, A. Wiper, F. F. Ordoubadi, P. Williams, B. Clarke, et al. Incidence and mechanisms of longitudinal stent deformation associated with Biomatrix, Resolute, Element, and Xience stents: angiographic and case-by-case review of 1,800 PCIs. Catheter. Cardiovasc. Interv. 86:1002–1011, 2015.

    Article  PubMed  Google Scholar 

  12. Asri, R. I. M., W. S. W. Harun, M. Samykano, N. A. C. Lah, S. A. C. Ghani, F. Tarlochan, et al. Corrosion and surface modification on biocompatible metals: a review. Mater. Sci. Eng. C. 77:1261–1274, 2017. https://doi.org/10.1016/j.msec.2017.04.102.

    Article  CAS  Google Scholar 

  13. Azaouzi, M., A. Makradi, and S. Belouettar. Deployment of a self-expanding stent inside an artery: a finite element analysis. Mater. Des. 41:410–420, 2012. https://doi.org/10.1016/j.matdes.2012.05.019.

    Article  CAS  Google Scholar 

  14. Baan, J., B. E. Claessen, K. B. van Dijk, J. Vendrik, R. J. van der Schaaf, M. Meuwissen, et al. A randomized comparison of paclitaxel-eluting balloon versus everolimus-eluting stent for the treatment of any in-stent restenosis: the DARE trial. JACC Cardiovasc. Interv. 11:275–283, 2018.

    Article  PubMed  Google Scholar 

  15. Bai, W. Q., L. L. Li, Y. J. Xie, D. G. Liu, X. L. Wang, G. Jin, et al. Corrosion and tribocorrosion performance of M (M = Ta, Ti) doped amorphous carbon multilayers in Hank’s solution. Surf. Coat. Technol. 305:11–22, 2016.

    Article  CAS  Google Scholar 

  16. Berger, M., E. Rubinraut, I. Barshack, A. Roth, G. Keren, and J. George. Zinc reduces intimal hyperplasia in the rat carotid injury model. Atherosclerosis. 175:229–234, 2004.

    Article  CAS  PubMed  Google Scholar 

  17. Bhatt, D. L. EXAMINATION of new drug-eluting stents—top of the class! Lancet. 380:1453–1455, 2012.

    Article  PubMed  Google Scholar 

  18. Bhogal, S., H. B. Panchal, J. Bagai, S. Banerjee, E. S. Brilakis, D. Mukherjee, et al. Drug-eluting versus bare metal stents in saphenous vein graft intervention: an updated comprehensive meta-analysis of randomized trials. Cardiovasc. Revasc. Med. 20:758–767, 2019.

    Article  PubMed  Google Scholar 

  19. Bhowmick, S., F. G. Sen, A. Banerji, and A. T. Alpas. Friction and adhesion of fluorine containing hydrophobic hydrogenated diamond-like carbon (F-H-DLC) coating against magnesium alloy AZ91. Surf. Coat. Technol. 267:21–31, 2015. https://doi.org/10.1016/j.surfcoat.2014.11.047.

    Article  CAS  Google Scholar 

  20. Biscaglia, S., G. Campo, R. Pavasini, M. Tebaldi, C. Tumscitz, and R. Ferrari. Occurrence, causes, and outcome after switching from ticagrelor to clopidogrel in a real-life scenario: data from a prospective registry. Platelets. 27:484–487, 2016. https://doi.org/10.3109/09537104.2015.1119815.

    Article  CAS  PubMed  Google Scholar 

  21. Bixler, G. D., and B. Bhushan. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Nanoscale. 5:7685–7710, 2013.

    Article  CAS  PubMed  Google Scholar 

  22. Bormashenko, E., Y. Bormashenko, T. Stein, G. Whyman, and E. Bormashenko. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie–Baxter wetting hypothesis and Cassie–Wenzel capillarity-induced wetting transition. J. Colloid Interface Sci. 311:212–216, 2007.

    Article  CAS  PubMed  Google Scholar 

  23. Bowen, P. K., R. J. Guillory, E. R. Shearier, J. M. Seitz, J. Drelich, M. Bocks, et al. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents. Mater. Sci. Eng. C. 56:467–472, 2015. https://doi.org/10.1016/j.msec.2015.07.022.

    Article  CAS  Google Scholar 

  24. Breen, C. R. The Role of miRNAs in Stroke. Thesis, University of Glasgow, 2015. http://theses.gla.ac.uk/6498/2/2015BreenPhD.pdf.

  25. Brilakis, E. S., C. Lichtenwalter, A. R. R. Abdel-Karim, J. A. De Lemos, O. Obel, T. Addo, et al. Continued benefit from paclitaxel-eluting compared with bare-metal stent implantation in saphenous vein graft lesions during long-term follow-up of the SOS (Stenting of Saphenous Vein Grafts) trial. JACC Cardiovasc. Interv. 4:176–182, 2011. https://doi.org/10.1016/j.jcin.2010.10.003.

    Article  PubMed  Google Scholar 

  26. Brilakis, E. S. Drug-eluting stents vs. bare metal stents in saphenous vein graft angioplasty (DIVA). In: European Cardiology Congress, Barcelona, Spain, 2017.

  27. Brott, B. C., and A. Chatterjee. Drug-eluting balloon therapy for in-stent restenosis of drug-eluting stents: choose and prepare the appropriate lesion. JACC Cardiovasc. Interv. 11:979–980, 2018. https://doi.org/10.1016/j.jcin.2018.03.014.

    Article  PubMed  Google Scholar 

  28. Buccheri, D., D. Piraino, G. Andolina, and B. Cortese. Understanding and managing in-stent restenosis: a review of clinical data, from pathogenesis to treatment. J. Thorac. Dis. 8:E1150–E1162, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bush, J. W. M., D. L. Hu, and M. Prakash. The integument of water-walking arthropods: form and function. Adv Insect Physiol. 34:117–192, 2007.

    Article  Google Scholar 

  30. Buysschaert, I., G. J. Ughi, T. Adriaenssens, and P. Vermeersch. Very late stent thrombosis and longitudinal stent deformation. Acta Cardiol. 72:216–222, 2017.

    Article  PubMed  Google Scholar 

  31. Byrne, R. A., S. Cassese, T. Windisch, L. A. King, M. Joner, T. Tada, et al. Differential relative efficacy between drug-eluting stents in patients with bare metal and drug-eluting stent restenosis; evidence in support of drug resistance: insights from the ISAR-DESIRE and ISAR-DESIRE 2 trials. EuroIntervention. 9:797–802, 2013.

    Article  PubMed  Google Scholar 

  32. Byrne, R. A., M. Joner, T. Tada, and A. Kastrati. Restenosis in bare metal and drug-eluting stents: distinct mechanistic insights from histopathology and optical intravascular imaging. Minerva Cardioangiol. 60:473–489, 2012.

    CAS  PubMed  Google Scholar 

  33. Byrne, R. A., F. J. Neumann, J. Mehilli, S. Pinieck, B. Wolff, K. Tiroch, et al. Paclitaxel-eluting balloons, paclitaxel-eluting stents, and balloon angioplasty in patients with restenosis after implantation of a drug-eluting stent (ISAR-DESIRE 3): a randomised, open-label trial. Lancet. 381:461–467, 2013.

    Article  CAS  PubMed  Google Scholar 

  34. Byrne, R. A. Restenosis after drug-eluting stenting—a call for action. In: New Benchmark for DES. 2017, pp. 103–105.

  35. Chan, A. W., and D. J. Moliterno. Clinical evaluation of restenosis. In: Atherothrombosis and Coronary Artery Disease. Philadelphia: Lippincott Williams & Wilkins, 2004, pp. 1415–1441.

  36. Chao, Z., X. Yaomu, L. Chufeng, and L. Conghua. The effect of mucin, fibrinogen and IgG on the corrosion behaviour of Ni–Ti alloy and stainless steel. BioMetals. 30:367–377, 2017.

    Article  PubMed  Google Scholar 

  37. Chen, R., Y. Wan, W. Wu, C. Yang, J. H. He, J. Cheng, et al. A lotus effect-inspired flexible and breathable membrane with hierarchical electrospinning micro/nanofibers and ZnO nanowires. Mater. Des. 162:246–248, 2019. https://doi.org/10.1016/j.matdes.2018.11.041.

    Article  CAS  Google Scholar 

  38. Dong, C., X. Wei, Z. Li, W. Shi, and Z. Wang. Experimental study on surface element composition and hydrophobic properties of DLC coating. Key Eng. Mater. 764:58–67, 2018.

    Article  Google Scholar 

  39. Dong, P., R. Yao, Z. Yan, Z. Yan, W. Wang, X. He, et al. Microstructure and corrosion resistance of laser-welded crossed Nitinol wires. Materials (Basel). 11:842–854, 2018.

    Article  Google Scholar 

  40. Dorozhkin, S. V. Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Acta Biomater. 10:2919–2934, 2014. https://doi.org/10.1016/j.actbio.2014.02.026.

    Article  CAS  PubMed  Google Scholar 

  41. Ducheyne, P., and G. W. Hastings. The structure, properties and functional behavior of biomaterials. In: Metal and Ceramic Biomaterials: Strength and Surface, Vol II. Boca Raton: CRC Press, 2018.

  42. Eliaz, N. Degradation of Implant Materials. New York: Springer, 2012.

    Book  Google Scholar 

  43. Erbel, R., C. Di Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F. R. Eberli, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet. 369:1869–1875, 2007.

    Article  CAS  PubMed  Google Scholar 

  44. Fortune Business Insights. Coronary Stent Market Size, Share and Industry Analysis, by Stent Type (Drug-Eluting Stent, Bioresorbable Stent, Bare Metal Stent, Covered Stent, Others), by Deployment (Self-Expandable, Balloon-Expandable), by End User (Hospitals and Ambulatory Surgical Centers. Market Research Report. Fortune Business Insights, 2020, pp. 1–160.

  45. Fukamachi, D., A. Hirayama, K. Miyauchi, S. Yasuda, H. Ogawa, H. Ito, et al. Antithrombotic therapy trends in non-valvular atrial fibrillation patients undergoing percutaneous coronary stent implantation: results from a survey among fellows at the Japanese College of Cardiology. J. Cardiol. 72:113–119, 2018. https://doi.org/10.1016/j.jjcc.2018.01.017.

    Article  PubMed  Google Scholar 

  46. Gao, F., Y. Hu, G. Li, S. Liu, L. Quan, Z. Yang, et al. Layer-by-layer deposition of bioactive layers on magnesium alloy stent materials to improve corrosion resistance and biocompatibility. Bioact. Mater. 5:611–623, 2020. https://doi.org/10.1016/j.bioactmat.2020.04.016.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gao, X., and L. Jiang. Water-repellent legs of water striders. Nature. 432:36, 2004.

    Article  CAS  PubMed  Google Scholar 

  48. Gao, L., Y. B. Wang, J. Jing, M. Zhang, and Y. D. Chen. Drug-eluting balloons versus new generation drug-eluting stents for the management of in-stent restenosis: an updated meta-analysis of randomized studies. J. Geriatr. Cardiol. 16:448–457, 2019.

    PubMed  PubMed Central  Google Scholar 

  49. Govindarajan, T., and R. Shandas. A survey of surface modification techniques for next-generation shape memory polymer stent devices. Polymers (Basel). 6:2309–2331, 2014.

    Article  Google Scholar 

  50. Grand View Research. Coronary Stents Market Size, Share and Trends Report Coronary Stents Market Size, Share and Trends Analysis Report by Product (Bare Metal Stents, Drug Eluting Stents, Bioresorbable Vascular Scaffold), by Region (North America, Europe, APAC, Latin America, MEA. Market Analysis Report. Grand View Research, 2020, pp. 1–110.

  51. Grogan, J. A., S. B. Leen, and P. E. McHugh. Comparing coronary stent material performance on a common geometric platform through simulated bench testing. J. Mech. Behav. Biomed. Mater. 12:129–138, 2012. https://doi.org/10.1016/j.jmbbm.2012.02.013.

    Article  CAS  PubMed  Google Scholar 

  52. Guerchais, R., G. Scalet, A. Constantinescu, and F. Auricchio. Micromechanical modeling for the probabilistic failure prediction of stents in high-cycle fatigue. Int. J. Fatigue. 87:405–417, 2016. https://doi.org/10.1016/j.ijfatigue.2016.02.026.

    Article  Google Scholar 

  53. Guo, Z., and W. Liu. Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure. Plant Sci. 172:1103–1112, 2007.

    Article  CAS  Google Scholar 

  54. Guslitzer-Okner, R., and D. Mandler. Electrochemical coating of medical implants. In: Applications of Electrochemistry and Nanotechnology in Biology and Medicine Part I—Modern Aspects of Electrochemistry Series B (MAOE), Vol 52). New York: Springer, 2011, pp. 291–342.

  55. Habara, S., M. Iwabuchi, N. Inoue, S. Nakamura, R. Asano, S. Nanto, et al. A multicenter randomized comparison of paclitaxel-coated balloon catheter with conventional balloon angioplasty in patients with bare-metal stent restenosis and drug-eluting stent restenosis. Am. Heart J. 166:527-533.e2, 2013. https://doi.org/10.1016/j.ahj.2013.07.002.

    Article  CAS  PubMed  Google Scholar 

  56. Habara, S., K. Kadota, T. Kanazawa, T. Ichinohe, S. Kubo, Y. Hyodo, et al. Paclitaxel-coated balloon catheter compared with drug-eluting stent for drug-eluting stent restenosis in routine clinical practice. EuroIntervention. 11:1098–1105, 2016.

    Article  PubMed  Google Scholar 

  57. Halwani, D. O., P. G. Anderson, J. E. Lemons, W. D. Jordan, A. S. Anayiotos, and B. C. Brott. In vivo corrosion and local release of metallic ions from vascular stents into surrounding tissue. J. Invasive Cardiol. 22:528–535, 2010.

    PubMed  Google Scholar 

  58. Han, M., S. Go, and Y. Ahn. Fabrication of superhydrophobic surface on magnesium substrate by chemical etching. Bull. Korean Chem. Soc. 33:1363–1366, 2012.

    Article  CAS  Google Scholar 

  59. Hanawa, T. Research and development of metals for medical devices based on clinical needs. Sci Technol. Adv. Mater. 2012. https://doi.org/10.1088/1468-6996/13/6/064102.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Harun, W. S. W., R. I. M. Asri, J. Alias, F. H. Zulkifli, K. Kadirgama, S. A. C. Ghani, et al. A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceram. Int. 44:1250–1268, 2018.

    Article  CAS  Google Scholar 

  61. Harvard Heart Letter. Bypass or angioplasty with stenting: how do you choose? Harvard Health Publication (cited 25 April 2020). https://www.health.harvard.edu/heart-health/bypass-or-angioplasty-with-stenting-how-do-you-choose.

  62. Her, A., and E. Shin. Current management of in-stent restenosis. Korean Circ. J. 48:337–349, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hermawan, H., D. Dubé, and D. Mantovani. Developments in metallic biodegradable stents. Acta Biomater. 6:1693–1697, 2010. https://doi.org/10.1016/j.actbio.2009.10.006.

    Article  CAS  PubMed  Google Scholar 

  64. Holmes, D. R. In-stent restenosis. Rev. Cardiovasc. Med. 2:115–119, 2019.

    Google Scholar 

  65. Hong, S. J., C. M. Ahn, B. K. Kim, Y. G. Ko, S. H. Hur, C. W. Yu, et al. Prospective randomized comparison of clinical and angiographic outcomes between everolimus-eluting vs. zotarolimus-eluting stents for treatment of coronary restenosis in drug-eluting stents: intravascular ultrasound volumetric analysis (RESTENT-ISR trial). Eur. Heart J. 37:3409–3418, 2016.

    Article  CAS  PubMed  Google Scholar 

  66. Hu, T., J. Yang, K. Cui, Q. Rao, T. Yin, L. Tan, et al. Controlled slow-release drug-eluting stents for the prevention of coronary restenosis: recent progress and future prospects. ACS Appl. Mater. Interfaces. 7:11695–11712, 2015.

    Article  CAS  PubMed  Google Scholar 

  67. Hu, T., C. Yang, S. Lin, Q. Yu, and G. Wang. Biodegradable stents for coronary artery disease treatment: recent advances and future perspectives. Mater. Sci. Eng. C. 91:163–178, 2018. https://doi.org/10.1016/j.msec.2018.04.100.

    Article  CAS  Google Scholar 

  68. Huang, Z., Y. Zhu, J. Zhang, and G. Yin. Stable biomimetic superhydrophobicity and magnetization film with Cu-ferrite nanorods. J. Phys. Chem. C. 111:6821–6825, 2007.

    Article  CAS  Google Scholar 

  69. Høl, P. J., N. R. Gjerdet, and T. Jonung. Corrosion and metal release from overlapping arterial stents under mechanical and electrochemical stress—an experimental study. J. Mech. Behav. Biomed. Mater. 93:31–35, 2019. https://doi.org/10.1016/j.jmbbm.2019.02.001.

    Article  CAS  PubMed  Google Scholar 

  70. Iantorno, M., M. J. Lipinski, H. M. Garcia-Garcia, B. J. Forrestal, T. Rogers, D. Gajanana, et al. Meta-analysis of the impact of strut thickness on outcomes in patients with drug-eluting stents in a coronary artery. Am. J. Cardiol. 122:1652–1660, 2018. https://doi.org/10.1016/j.amjcard.2018.07.040.

    Article  PubMed  Google Scholar 

  71. Ijsselmuiden, A. J. J., C. Simsek, A. G. Van Driel, D. Bouchez, G. Amoroso, P. Vermeersch, et al. Comparison between the STENTYS self-apposing bare metal and paclitaxel-eluting coronary stents for the treatment of saphenous vein grafts (ADEPT Trial). Neth. Heart J. 26:94–101, 2018.

    Article  CAS  PubMed  Google Scholar 

  72. Inaba, S., G. S. Mintz, K. H. Yun, T. Yakushiji, T. Shimizu, S. J. Kang, et al. Mechanical complications of everolimus-eluting stents associated with adverse events: an intravascular ultrasound study. EuroIntervention. 9:1301–1308, 2014.

    Article  PubMed  Google Scholar 

  73. Industry Insights. Drug Eluting Stent Market Size and Share, Global Industry Report, 2024. Grand View Research (cited 9 March 2021). https://www.grandviewresearch.com/industry-analysis/drug-eluting-stent-market.

  74. Iwasaki, Y., J. Koike, T. Ko, A. Funatsu, T. Kobayashi, and T. Ikeda. Comparison of drug-eluting stents vs. drug-coated balloon after rotational atherectomy for severely calcified lesions of nonsmall vessels. Heart Vessels. 36:189–199, 2021. https://doi.org/10.1007/s00380-020-01684-z.

    Article  PubMed  Google Scholar 

  75. January, C. T., L. S. Wann, J. S. Alpert, H. Calkins, J. E. Cigarroa, J. C. Cleveland, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Circulation. 130(23):2071–2104, 2014.

    Article  PubMed  Google Scholar 

  76. Jeger, R. V., A. Farah, T. Engstrøm, S. Galatius, F. Eberli, P. Rickenbacher, et al. Drug-eluting vs. bare metal stents in saphenous vein grafts: the prospective randomized BASKET-SAVAGE Trial. In: ESC Congress, 2016, pp. 27–31.

  77. Jie, J., Y. Xi, H. Xu, L. Qihan, Z. Yu Shrike, and K. Ali. A highly stretchable and robust non-fluorinated superhydrophobic surface. J. Mater. Chem. A. 5:16273–16280, 2017.

    Article  Google Scholar 

  78. Kaseem, M., S. Fatimah, N. Nashrah, and Y. G. Ko. Recent progress in surface modification of metals coated by plasma electrolytic oxidation: principle, structure, and performance. Prog. Mater. Sci. 117:100735, 2020.

    Article  Google Scholar 

  79. Katsanos, K., S. Spiliopoulos, P. Kitrou, M. Krokidis, and D. Karnabatidis. Risk of death following application of paclitaxel-coated balloons and stents in the femoropopliteal artery of the leg: a systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 7:e011245, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kavitha Sri, A., P. Deeksha, G. Deepika, J. Nishanthini, G. S. Hikku, S. Antinate Shilpa, et al. Super-hydrophobicity: mechanism, fabrication and its application in medical implants to prevent biomaterial associated infections. J. Ind. Eng. Chem. 92:1–17, 2020. https://doi.org/10.1016/j.jiec.2020.08.008.

    Article  CAS  Google Scholar 

  81. Kazemian, M. R., A. Solouk, A. Tan, and A. M. Seifalian. Preventing in-stent restenosis using lipoprotein (a), lipid and cholesterol adsorbent materials. Med. Hypotheses. 85:986–988, 2015. https://doi.org/10.1016/j.mehy.2015.08.023.

    Article  CAS  PubMed  Google Scholar 

  82. Khan, S. F., M. A. Sherbondy, A. Ormsby, and V. Velanovich. Occlusion of metallic biliary stent related to nickel allergy. Gastrointest. Endosc. 66:413–414, 2007.

    Article  PubMed  Google Scholar 

  83. Kim, M. S., and L. S. Dean. In-stent restenosis. Cardiovasc. Ther. 29:190–198, 2011.

    Article  PubMed  Google Scholar 

  84. Kim, Y. H., A. Her, S. Rha, B. G. Choi, S. Y. Choi, J. K. Byun, et al. Comparison of 3-year clinical outcomes between Endeavor Resolute® and Resolute Integrity® zotarolimus-eluting stents in an Asian population. Anatol. J. Cardiol. 23:268–276, 2020.

    PubMed  PubMed Central  Google Scholar 

  85. Kim, M. J., J. Kim, and H. S. Kho. Comparison of clinical characteristics between burning mouth syndrome patients with bilateral and unilateral symptoms. Int. J. Oral Maxillofac. Surg. 49:38–43, 2020. https://doi.org/10.1016/j.ijom.2019.06.013.

    Article  PubMed  Google Scholar 

  86. Kim, K., J. D. Lichtenhan, and J. U. Otaigbe. Facile route to nature inspired hydrophobic surface modification of phosphate glass using polyhedral oligomeric silsesquioxane with improved properties. Appl. Surf. Sci. 470:733–743, 2019. https://doi.org/10.1016/j.apsusc.2018.11.181.

    Article  CAS  Google Scholar 

  87. Konigstein, M., P. C. Smits, M. P. Love, O. Ben-Yehuda, M. O. Ozan, M. Liu, et al. Randomized comparison of ridaforolimus-eluting and zotarolimus-eluting coronary stents. Cardiovasc. Interv. 13:86–93, 2020.

    Google Scholar 

  88. Kougias, P., S. Sharath, N. R. Barshes, B. Lowery, A. Garcia, T. Pak, et al. Impact of cumulative intravascular contrast exposure on renal function in patients with occlusive and aneurysmal vascular disease. J. Vasc. Surg. 59:1644–1650, 2014. https://doi.org/10.1016/j.jvs.2013.12.039.

    Article  PubMed  Google Scholar 

  89. Kraus, T., F. Moszner, S. Fischerauer, M. Fiedler, E. Martinelli, J. Eichler, et al. Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52 weeks. Acta Biomater. 10:3346–3353, 2014. https://doi.org/10.1016/j.actbio.2014.04.007.

    Article  CAS  PubMed  Google Scholar 

  90. Kuramitsu, S., M. Iwabuchi, T. Haraguchi, T. Domei, A. Nagae, M. Hyodo, et al. Incidence and clinical impact of stent fracture after everolimus-eluting stent implantation. Circ. Cardiovasc. Interv. 5:663–671, 2012.

    Article  CAS  PubMed  Google Scholar 

  91. Kuramitsu, S., H. Jinnouchi, T. Hiromasa, Y. Yamaji, M. Miura, Y. Matsumura, et al. Incidence and clinical impact of late-acquired stent fracture after sirolimus-eluting stent implantation. J. Am. Coll. Cardiol. 67:424, 2016. https://doi.org/10.1016/S0735-1097(16)30425-9.

    Article  Google Scholar 

  92. Kurtz, S. M. PEEK Biomaterials Handbook, 2nd ed. Oxford: Elsevier, 2019.

    Google Scholar 

  93. Kusumaatmaja, H., and J. M. Yeomans. Anisotropic hysteresis on ratcheted superhydrophobic surfaces. Soft Matter. 5:2704–2707, 2009.

    Article  CAS  Google Scholar 

  94. Kuznetsov, Y. I. Physico-chemical aspects of protection of metals by organic corrosion inhibitors. Prot. Met. Phys. Chem. Surf. 51:1111–1121, 2015.

    Article  CAS  Google Scholar 

  95. Kwon, J., P. Dimuzio, D. Salvatore, and B. Abai. Incidence of stent graft failure from type IIIB endoleak in contemporary endovascular abdominal aortic aneurysm repair. J. Vasc. Surg. 71:645–653, 2020.

    Article  PubMed  Google Scholar 

  96. Kwon, D. Y., J. I. Kim, D. Y. Kim, K. H. Ju, B. Lee, K. W. Lee, et al. Biodegradable stents. J. Biomed. Sci. Eng. 5:208–216, 2012.

    Article  CAS  Google Scholar 

  97. Kübler, P., B. Tomasiewicz, M. Johansson, A. Szczepañski, and K. Reczuch. Mechanical stent failure as a cause of life-threatening left main restenosis. Postep w Kardiol. Interwencyjnej. 12:271–273, 2016.

    Google Scholar 

  98. Lai, Y., F. Pan, C. Xu, H. Fuchs, and L. Chi. In situ surface-modification-induced superhydrophobic patterns with reversible wettability and adhesion. Adv. Mater. 25:1682–1686, 2013.

    Article  CAS  PubMed  Google Scholar 

  99. Lange, D., S. Bidnur, N. Hoag, and B. H. Chew. Ureteral stent-associated complications—where we are and where we are going. Nat. Rev. Urol. 12:17–25, 2015.

    Article  PubMed  Google Scholar 

  100. Lee, D. H., and J. M. de la Torre Hernandez. The newest generation of drug-eluting stents and beyond. Eur. Cardiol. Rev. 13:54–59, 2018.

    Article  Google Scholar 

  101. Lewis, A. L. A review on phosphorylcholine-coated stents. J. Long Term Eff. Med. Implants. 27:205–219, 2017.

    Article  Google Scholar 

  102. Li, Y. J., X. Pan, C. Wang, and B. He. Stent implantation for severe pulmonary vein stenosis or occlusion secondary to atrial fibrillation ablation. Int. J. Cardiol. 301:85–89, 2020. https://doi.org/10.1016/j.ijcard.2019.11.147.

    Article  PubMed  Google Scholar 

  103. Li, Y., N. Tang, P. Tunthawiroon, Y. Koizumi, and A. Chiba. Characterisation of oxide films formed on Co–29Cr–6Mo alloy used in die-casting moulds for aluminium. Corros. Sci. 73:72–79, 2013. https://doi.org/10.1016/j.corsci.2013.03.026.

    Article  CAS  Google Scholar 

  104. Lin, W., L. Qin, H. Qi, D. Zhang, G. Zhang, R. Gao, et al. Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold. Acta Biomater. 54:454–468, 2017. https://doi.org/10.1016/j.actbio.2017.03.020.

    Article  CAS  PubMed  Google Scholar 

  105. Liu, H. Q. Improving the hemocompatibility of stents. In: Hemocompatibility of Biomaterials for Clinical Applications. Amsterdam: Elsevier, 2018, pp. 379–394.

  106. Loh, J. P., P. R. Stella, G. Sangiorgi, S. Silber, S. Stahnke, R. P. von Strandmann, et al. Paclitaxel-coated balloon for the treatment of drug-eluting stent restenosis: subanalysis results from the Valentines I trial. Cardiovasc. Revasc. Med. 15:23–28, 2014. https://doi.org/10.1016/j.carrev.2013.08.011.

    Article  PubMed  Google Scholar 

  107. Mamas, M. A., N. Foin, C. Abunassar, M. A. Khan, C. Di Mario, and D. G. Fraser. Stent fracture: insights on mechanisms, treatments, and outcomes from the Food and Drug Administration manufacturer and user facility device experience database. Catheter. Cardiovasc. Interv. 83(7):E251–E259, 2014.

    Article  PubMed  Google Scholar 

  108. Mehilli, J., R. A. Byrne, K. Tiroch, S. Pinieck, S. Schulz, S. Kufner, et al. Randomized trial of paclitaxel- versus sirolimus-eluting stents for treatment of coronary restenosis in sirolimus-eluting stents. The ISAR-DESIRE 2 (Intracoronary Stenting and Angiographic Results: Drug Eluting Stents for In-Stent Restenosis 2) Study. J. Am. Coll. Cardiol. 55:2710–2716, 2010. https://doi.org/10.1016/j.jacc.2010.02.009.

    Article  CAS  PubMed  Google Scholar 

  109. Mehilli, J., J. Pache, M. Abdel-Wahab, S. Schulz, R. A. Byrne, K. Tiroch, et al. Drug-eluting versus bare-metal stents in saphenous vein graft lesions (ISAR-CABG): a randomised controlled superiority trial. Lancet 378:1071–1078, 2011. https://doi.org/10.1016/S0140-6736(11)61255-5

    Article  CAS  PubMed  Google Scholar 

  110. Mele, E., S. Girardo, and D. Pisignano. Strelitzia reginae leaf as a natural template for anisotropic wetting and superhydrophobicity. Langmuir. 28:5312–5317, 2012.

    Article  CAS  PubMed  Google Scholar 

  111. Mieres, J., J. Lloberas, C. Haeik, J. Iravedra, M. Larribau, M. Menéndez, et al. New cobalt–chromium stent design in the treatment of real world coronary artery disease: rationality and study design of the all comers observational, multicenter WALTZ Registry. Rev. Argent. 8:12–17, 2017. http://adm.meducatium.com.ar/contenido/numeros/420171_100/pdf/420171.pdf#page=21.

  112. Mitra, A. K., and D. K. Agrawal. In stent restenosis: bane of the stent era. J. Clin. Pathol. 59:232–239, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Moghadam, R. Z., M. H. Ehsani, H. R. Dizaji, P. Kameli, and M. Jannesari. Modification of hydrophobicity properties of diamond like carbon films using glancing angle deposition method. Mater. Lett. 220:301–304, 2018. https://doi.org/10.1016/j.matlet.2018.03.060.

    Article  CAS  Google Scholar 

  114. Moravej, M., and D. Mantovani. Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int. J. Mol. Sci. 12:4250–4270, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mori, H., S. Torii, E. Harari, H. Jinnouchi, R. Brauman, S. Smith, et al. Pathological mechanisms of left main stent failure. Int. J. Cardiol. 263:9–16, 2018. https://doi.org/10.1016/j.ijcard.2018.02.119.

    Article  PubMed  Google Scholar 

  116. Moscarella, E., A. Ielasi, M. C. de Angelis, F. S. di Uccio, E. Cerrato, R. de Rosa, et al. Are acute coronary syndromes an ideal scenario for bioresorbable vascular scaffold implantation? J. Thorac. Dis. 9:S969–S978, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Münch, L., E. Herbst, F. Dyrna, F. B. Imhoff, A. B. Imhoff, and K. Beitzel. Update on failure analysis of implants in ACL surgery: technical failure or fate? Z. Orthop. Unfall. 157:540–547, 2019.

    Article  PubMed  Google Scholar 

  118. Naganuma, T., A. Latib, C. Costopoulos, J. Oreglia, L. Testa, F. De Marco, et al. Drug-eluting balloon versus second-generation drug-eluting stent for the treatment of restenotic lesions involving coronary bifurcations. EuroIntervention. 11:989–995, 2016.

    Article  PubMed  Google Scholar 

  119. Nagaraja, S., and A. R. Pelton. Corrosion resistance of a Nitinol ocular microstent: implications on biocompatibility. J. Biomed. Mater. Res. B. 108(6):1–10, 2020.

    Article  Google Scholar 

  120. Negi, S. I., R. Torguson, J. Gai, S. Kiramijyan, E. Koifman, R. Chan, et al. Intracoronary brachytherapy for recurrent drug-eluting stent failure. JACC Cardiovasc. Interv. 9:1259–1265, 2016.

    Article  PubMed  Google Scholar 

  121. Nel, A. E., L. Mädler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8:543–557, 2009.

    Article  CAS  PubMed  Google Scholar 

  122. Niinomi, M., M. Nakai, and J. Hieda. Development of new metallic alloys for biomedical applications. Acta Biomater. 8:3888–3903, 2012. https://doi.org/10.1016/j.actbio.2012.06.037.

    Article  CAS  PubMed  Google Scholar 

  123. Oikonomou, K., P. Kasprzak, A. Katsargyris, P. Marques De Marino, K. Pfister, and E. L. G. Verhoeven. Mid-term results of fenestrated/branched stent grafting to treat post-dissection thoraco-abdominal aneurysms. Eur. J. Vasc. Endovasc. Surg. 57:102–109, 2019.

    Article  PubMed  Google Scholar 

  124. O’Brien, B., H. Zafar, A. Ibrahim, J. Zafar, and F. Sharif. Coronary stent materials and coatings: a technology and performance update. Ann. Biomed. Eng. 44:523–535, 2016.

    Article  PubMed  Google Scholar 

  125. Pandelea-Dobrovicescu, G. R., M. Prodana, F. Golgovici, D. Ionita, M. Sajin, and I. Demetrescu. Surface morphology and histopathological aspects of metallic used cardiovascular CoCr stents. Metals (Basel). 10:1112, 2020.

    Article  CAS  Google Scholar 

  126. Park, I. S., T. S. Bae, and K. W. Seol. Surface characteristics of anodized and hydrothermally treated titanium with an increasing concentration of calcium ion. Met. Mater. Int. 12:399–406, 2006.

    Article  CAS  Google Scholar 

  127. Park, K., S. Nam, D. Hwan, H. Kim, K. Seob, W. Park, et al. Late endothelial progenitor cell-capture stents with CD146 antibody and nanostructure reduce in-stent restenosis and thrombosis. Acta Biomater. 111:91–101, 2020. https://doi.org/10.1016/j.actbio.2020.05.011.

    Article  CAS  PubMed  Google Scholar 

  128. Pavithra, D., and M. Doble. Biofilm formation, bacterial adhesion and host response on polymeric implants—issues and prevention. Biomed. Mater. 3:034003, 2008.

    Article  CAS  PubMed  Google Scholar 

  129. Peron, M., R. Bertolini, A. Ghiotti, J. Torgersen, S. Bruschi, and F. Berto. Enhancement of stress corrosion cracking of AZ31 magnesium alloy in simulated body fluid thanks to cryogenic machining. J. Mech. Behav. Biomed. Mater.101:103429, 2020. https://doi.org/10.1016/j.jmbbm.2019.103429.

    Article  CAS  PubMed  Google Scholar 

  130. Peron, M., J. Torgersen, and F. Berto. Effect of zirconia ALD coating on stress corrosion cracking of AZ31 alloy in simulated body fluid. Procedia Struct. Integr. 18:538–548, 2019. https://doi.org/10.1016/j.prostr.2019.08.198.

    Article  Google Scholar 

  131. Planell, J. A., M. Navarro, G. Altankov, C. Aparicio, E. Engel, J. Gil, et al. Materials surface effects on biological interactions. In: Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles. Dordrecht: Springer, 2010, pp. 233–252.

  132. Pleva, L., P. Kukla, and O. Hlinomaz. Treatment of coronary in-stent restenosis: a systematic review. J. Geriatr. Cardiol. 15:173–184, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Pleva, L., P. Kukla, P. Kusnierova, J. Zapletalova, and O. Hlinomaz. Comparison of the efficacy of paclitaxel-eluting balloon catheters and everolimus-eluting stents in the treatment of coronary in-stent restenosis. Circ. Cardiovasc. Interv. 9:1–8, 2016.

    Google Scholar 

  134. Pleva, L., P. Kukla, J. Zapletalova, and O. Hlinomaz. Efficacy of a seal-wing paclitaxel-eluting balloon catheters in the treatment of bare metal stent restenosis. BMC Cardiovasc. Disord. 17:1–9, 2017.

    Article  Google Scholar 

  135. Polimeni, A., M. Weissner, K. Schochlow, H. Ullrich, C. Indolfi, J. Dijkstra, et al. Incidence, clinical presentation, and predictors of clinical restenosis in coronary bioresorbable scaffolds. JACC Cardiovasc. Interv. 10:1819–1827, 2017.

    Article  PubMed  Google Scholar 

  136. Qiu, Z., J. Liu, R. Huang, D. Liu, Z. Dai, M. Luo, et al. Incidence, risk, and treatment of binary restenosis after vertebral artery stenting. Catheter. Cardiovasc. Interv. 96:404–409, 2020.

    Article  PubMed  Google Scholar 

  137. Rathore, S., Y. Kinoshita, M. Terashima, O. Katoh, H. Matsuo, N. Tanaka, et al. A comparison of clinical presentations, angiographic patterns and outcomes of in-stent restenosis between bare metal stents and drug eluting stents. EuroIntervention. 5:841–846, 2010.

    Article  PubMed  Google Scholar 

  138. Reis, R. L., and S. Weiner. Learning from Nature How to Design New Implantable Biomaterials: From Biomineralization Fundamentals to Biomimetic Materials and Processing Routes, 2003. https://books.google.com/books?id=dfI-AAAAQBAJ&pgis=1.

  139. Rittger, H., J. Brachmann, A. M. Sinha, M. Waliszewski, M. Ohlow, A. Brugger, et al. A randomized, multicenter, single-blinded trial comparing paclitaxel-coated balloon angioplasty with plain balloon angioplasty in drug-eluting stent restenosis: the PEPCAD-DES study. J. Am. Coll. Cardiol. 59:1377–1382, 2012. https://doi.org/10.1016/j.jacc.2012.01.015.

    Article  CAS  PubMed  Google Scholar 

  140. Rizik, D. G., and B. B. Padaliya. Early U.S. experience following FDA approval of the ABBOTT vascular bioresorbable vascular scaffold: optimal deployment technique using high resolution coronary artery imaging. J. Interv. Cardiol. 29:546–548, 2016.

    Article  PubMed  Google Scholar 

  141. Rohrbaugh, M., K. E. Schober, J. D. Bonagura, S. Cheatham, J. Rhinehart, and D. Berman. Treatment of caudal cavoatrial junction obstruction in a dog with a balloon-expandable biliary stent. J. Vet. Cardiol. 23:112–121, 2019. https://doi.org/10.1016/j.jvc.2019.02.004.

    Article  CAS  PubMed  Google Scholar 

  142. Romero-Brufau, S., P. J. M. Best, D. R. Holmes, V. Mathew, M. D. P. Davis, G. S. Sandhu, et al. Outcomes after coronary stent implantation in patients with metal allergy. Circ. Cardiovasc. Interv. 5:220–226, 2012.

    Article  CAS  PubMed  Google Scholar 

  143. Saia, F. Surgery after drug-eluting stent implantation: it’s not all doom and gloom! J. Thorac. Dis. 9:E373–E377, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Satow, T., N. Sakai, H. Yamamoto, H. Oishi, A. Ishii, Y. Nakayama, et al. A novel microporous covered stent NCVC-CS1 for the treatment of intracranial aneurysms: its functional features and preliminary results of clinical trial. Stroke. 50:1–5, 2019.

    Article  Google Scholar 

  145. Saugo, M., D. O. Flamini, G. Zampieri, and S. B. Saidman. Corrosion resistance improvement of Nitinol by anodisation in the presence of molybdate ions. Mater. Chem. Phys. 190:136–145, 2017. https://doi.org/10.1016/j.matchemphys.2017.01.017.

    Article  CAS  Google Scholar 

  146. Schinhammer, M., I. Gerber, A. C. Hänzi, and P. J. Uggowitzer. On the cytocompatibility of biodegradable Fe-based alloys. Mater. Sci. Eng. C. 33:782–789, 2013. https://doi.org/10.1016/j.msec.2012.11.002.

    Article  CAS  Google Scholar 

  147. Shatzel, J. Drug eluting biliary stents to decrease stent failure rates: a review of the literature. World J. Gastrointest. Endosc. 8:77, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Si, D., Y. Tong, B. Yu, Y. He, and G. Liu. In-stent restenosis and longitudinal stent deformation: a case report. BMC Cardiovasc. Disord. 20:1–4, 2020.

    Article  Google Scholar 

  149. Sierra, E., F. G. Acien, J. M. Fernandez, J. L. Garcia, C. Gonzalez, and E. Molina. Characterization of a flat plate photobioreactor for the production of microalgae. Chem. Eng. J. 138:136–147, 2008.

    Article  CAS  Google Scholar 

  150. Siersema, P. D. Treatment options for esophageal strictures. Nat. Clin. Pract. Gastroenterol. Hepatol. 5:142–152, 2008.

    Article  PubMed  Google Scholar 

  151. Singhal, R., J. Prajapati, I. Patel, C. Patel, and S. Sahoo. One-year clinical outcomes of drug-eluting stents versus bare-metal stents in large coronary arteries. J. Clin. Prev. Cardiol. 9:56–60, 2020.

    Article  Google Scholar 

  152. Soares, J. S., and J. E. Moore. Biomechanical challenges to polymeric biodegradable stents. Ann. Biomed. Eng. 44:560–579, 2016.

    Article  PubMed  Google Scholar 

  153. Sorkin, G. C., T. M. Dumont, J. L. Eller, M. Mokin, L. N. Hopkins, K. V. Snyder, et al. Instent restenosis after carotid stenting: treatment using an off-label cardiac scoring balloon. J. Vasc. Inerv. Neurol. 7:29–34, 2014.

    Google Scholar 

  154. Su, Y., C. Luo, Z. Zhang, H. Hermawan, D. Zhu, J. Huang, et al. Bioinspired surface functionalization of metallic biomaterials. J. Mech. Behav. Biomed. Mater. 77:90–105, 2018. https://doi.org/10.1016/j.jmbbm.2017.08.035.

    Article  CAS  PubMed  Google Scholar 

  155. Sun, K., H. Liu, X. Wang, and D. Wu. Innovative design of superhydrophobic thermal energy-storage materials by microencapsulation of n-docosane with nanostructured ZnO/SiO2 shell. Appl. Energy. 237:549–565, 2019. https://doi.org/10.1016/j.apenergy.2019.01.043.

    Article  CAS  Google Scholar 

  156. Surmenev, R. A., M. A. Surmeneva, and A. A. Ivanova. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis—a review. Acta Biomater. 10:557–579, 2014. https://doi.org/10.1016/j.actbio.2013.10.036.

    Article  CAS  PubMed  Google Scholar 

  157. Tengvall, P., and I. Lundström. Physico-chemical considerations of titanium as a biomaterial. Clin. Mater. 9(2):115–134, 1992.

    Article  CAS  PubMed  Google Scholar 

  158. Tsai, M., M. Hsieh, C. Chen, S. Chang, C. Wang, and D. Chen. Comparison of 9-month angiographic follow-up and long-term clinical outcomes of biodegradable polymer drug-eluting stents and second-generation durable polymer drug-eluting stents in patients undergoing single coronary artery stenting. Acta Cardiol. Sin. 36:97–104, 2020.

    PubMed  PubMed Central  Google Scholar 

  159. Tsang, A. C. O., P. Nicholson, and V. M. Pereira. Nickel-related adverse reactions in the treatment of cerebral aneurysms: a literature review. World Neurosurg. 115:147–153, 2018. https://doi.org/10.1016/j.wneu.2018.04.073.

    Article  PubMed  Google Scholar 

  160. Verheye, S., J. A. Ormiston, J. Stewart, M. Webster, E. Sanidas, R. Costa, et al. A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results. JACC Cardiovasc. Interv. 7:89–99, 2014.

    Article  PubMed  Google Scholar 

  161. Virtanen, S. Corrosion of biomedical implant materials. Corros. Rev. 26:147–171, 2008.

    Article  CAS  Google Scholar 

  162. Wang, F., L. Shi, W. X. He, D. Han, Y. Yan, Z. Y. Niu, et al. Bioinspired micro/nano fabrication on dental implant–bone interface. Appl. Surf. Sci. 265:480–488, 2013. https://doi.org/10.1016/j.apsusc.2012.11.032.

    Article  CAS  Google Scholar 

  163. Wang, R., R. Wang, D. Chen, G. Qin, and E. Zhang. Novel CoCrWNi alloys with Cu addition: microstructure, mechanical properties, corrosion properties and biocompatibility. J. Alloys Compd.824:153924, 2020. https://doi.org/10.1016/j.jallcom.2020.153924.

    Article  CAS  Google Scholar 

  164. Wang, G., Q. Zhao, Q. Chen, X. Zhang, L. Tian, and X. Zhang. Comparison of drug-eluting balloon with repeat drug-eluting stent for recurrent drug-eluting stent in-stent restenosis. Coron. Artery Dis. 30:473–480, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Watanabe, Y., K. Takagi, T. Naganuma, H. Kawamoto, Y. Fujino, H. Ishiguro, et al. Independent predictors of in-stent restenosis after drug-eluting stent implantation for ostial right coronary artery lesions. Int. J. Cardiol. 240:108–113, 2017. https://doi.org/10.1016/j.ijcard.2017.04.083.

    Article  PubMed  Google Scholar 

  166. Wee, D., Y. Toong, J. Chen, K. Ng, Y. Huang, P. En, et al. Bioresorbable metals in cardiovascular stents: material insights and progress. Materialia.12:100727, 2020. https://doi.org/10.1016/j.mtla.2020.100727.

    Article  CAS  Google Scholar 

  167. Wei, Y., Y. Ji, L. L. Xiao, Q.-K. Lin, J.-P. Xu, K.-F. Ren, et al. Surface engineering of cardiovascular stent with endothelial cell selectivity for in vivo re-endothelialisation. Biomaterials. 34:2588–2599, 2013. https://doi.org/10.1016/j.biomaterials.2012.12.036.

    Article  CAS  PubMed  Google Scholar 

  168. Wei, J., M. Yoshinari, S. Takemoto, M. Hattori, E. Kawada, B. Liu, et al. Adhesion of mouse fibroblasts on hexamethyldisiloxane surfaces with wide range of wettability. J. Biomed. Mater. Res. B. 81B:340–344, 2007.

    Article  Google Scholar 

  169. Wen, Y. Q., D. Kong, W. Shang, M. M. Ma, J. Q. Jiang, J. P. Li, et al. Effect of bis-(3-triethoxysilylpropyl)-tetrasulfide on super-hydrophobicity and corrosion resistance of self-assembled monolayers on 6061 aluminum alloys. Int. J. Electrochem. Sci. 14:6018–6031, 2019.

    Article  CAS  Google Scholar 

  170. Wiebe, J., H. M. Nef, and C. W. Hamm. Current status of bioresorbable scaffolds in the treatment of coronary artery disease. J. Am. Coll. Cardiol. 64:2541–2551, 2014.

    Article  CAS  PubMed  Google Scholar 

  171. Wong, Y. T. A., D. Y. Kang, J. B. Lee, S. W. Rha, Y. J. Hong, E. S. Shin, et al. Comparison of drug-eluting stents and drug-coated balloon for the treatment of drug-eluting coronary stent restenosis: a randomized RESTORE trial. Am. Heart J. 197:35–42, 2018. https://doi.org/10.1016/j.ahj.2017.11.008.

    Article  CAS  PubMed  Google Scholar 

  172. Wu, H., R. Zhang, Y. Sun, D. Lin, Z. Sun, W. Pan, et al. Biomimetic nanofiber patterns with controlled wettability. Soft Matter. 4:2429–2433, 2008.

    Article  CAS  Google Scholar 

  173. Wöhrle, J., M. Zadura, S. Möbius-Winkler, M. Leschke, C. Opitz, W. Ahmed, et al. SeQuentPlease World Wide Registry: clinical results of SeQuent please paclitaxel-coated balloon angioplasty in a large-scale, prospective registry study. J. Am. Coll. Cardiol. 60:1733–1738, 2012. https://doi.org/10.1016/j.jacc.2012.07.040.

    Article  PubMed  Google Scholar 

  174. Xie, X., X. Zheng, Z. Han, Y. Chen, Z. Zheng, B. Zheng, et al. A biodegradable stent with surface functionalization of combined-therapy drugs for colorectal cancer. Adv. Healthc. Mater. 7:1–15, 2018.

    Article  Google Scholar 

  175. Xu, B., R. Gao, J. Wang, Y. Yang, S. Chen, B. Liu, et al. A prospective, multicenter, randomized trial of paclitaxel-coated balloon versus paclitaxel-eluting stent for the treatment of drug-eluting stent in-stent restenosis: results from the PEPCAD China ISR trial. JACC Cardiovasc. Interv. 7:204–211, 2014.

    Article  PubMed  Google Scholar 

  176. Xu, B., R. Liu, L. Jiao, and J. Yu. Carotid endarterectomy for in-stent restenosis: a case report and literature review. Biomed. Rep. 7:128–132, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Yamaguchi, H., M. Li, and K. Hanada. Surface finishing of biodegradable stents. CIRP Ann. 68:357–360, 2019. https://doi.org/10.1016/j.cirp.2019.04.008.

    Article  Google Scholar 

  178. Yamanaka, K., M. Mori, K. Ohmura, and A. Chiba. Preventing high-temperature oxidation of Co–Cr-based dental alloys by boron doping. J. Mater. Chem. B. 4:309–317, 2016.

    Article  CAS  PubMed  Google Scholar 

  179. Yan, Y., A. Neville, and D. Dowson. Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments. Wear. 263:1105–1111, 2007.

    Article  CAS  Google Scholar 

  180. Zhang, M., S. Feng, L. Wang, and Y. Zheng. Lotus effect in wetting and self-cleaning. Biotribology. 5:31–43, 2016. https://doi.org/10.1016/j.biotri.2015.08.002.

    Article  Google Scholar 

  181. Zhang, L., N. Lin, J. Zou, X. Lin, Z. Liu, S. Yuan, et al. Super-hydrophobicity and corrosion resistance of laser surface textured AISI 304 stainless steel decorated with hexadecyltrimethoxysilane (HDTMS). Opt. Laser Technol.127:106146, 2020. https://doi.org/10.1016/j.optlastec.2020.106146.

    Article  CAS  Google Scholar 

  182. Zheng, Y., X. Gao, and L. Jiang. Directional adhesion of superhydrophobic butterfly wings. Soft Matter. 3:178–182, 2007.

    Article  CAS  PubMed  Google Scholar 

  183. Zindani, D., K. Kumar, and P. J. Davim. Metallic biomaterials—a review. In: Mechanical Behavior of Biomaterials. Woodhead Publishing Series in Biomaterials. Cambridge: Woodhead Publishing, 2019, pp. 83–99.

Download references

Funding

This study was supported by funds from the Erciyes University Scientific Research Projects Unit under Grant Number FDK-2019-8754.

Conflict of interest

The authors declare that they have no conflict of interest in this work.

Ethical Approval

This paper does not contain any studies with human participants or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulsen Akdogan.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Istanbullu, O.B., Akdogan, G. Influences of Stent Design on In-Stent Restenosis and Major Cardiac Outcomes: A Scoping Review and Meta-Analysis. Cardiovasc Eng Tech 13, 147–169 (2022). https://doi.org/10.1007/s13239-021-00569-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-021-00569-0

Keywords

Navigation