Skip to main content
Log in

Surface structure, morphology and crystal phase-dependent photoactivity of MnO2 nanocatalysts under sunlight

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

MnO2 exhibits numerous catalytic applications owing to its wide structural diversity with different chemical and physical properties. Different morphologies of MnO2 nanomaterial have been prepared to investigate oxidation of methylene blue dye and reduction of nitrobenzene under natural sunlight. MnO2 nanostructures displayed versatile photoactivity due to different surface and crystal structural morphologies. The prepared materials were characterized by XRD, SEM, EDS, DRS, DLS and fluorescence spectroscopy. The change in absorption maxima from 441 (sea urchin) to 444 nm (nanospheres) is due to change in shape, size and exposure of surface ligand density. Particle size distribution of α-MnO2 nanorods, sea urchin is 51 and 90–190 nm, respectively, with body-centred tetragonal crystalline structure. The structure of synthesized polymorphs consists of octahedral (MnO6) with different arrangements of edge and phase sharing. From SEM, variation in shapes from sea urchin to nanorods to nanospheres can be seen. MnO2-sea urchin (98%) and α-MnO2 nanorods (91%) give better activity in photo-oxidation of dye relative to MnO2 nanospheres. The overall photo-oxidation reaction follows pseudo first-order kinetics. Nitrobenzene (25 μmol) is selectively reduced to 80% aniline (20.5 μmol) by α-nanotubes of MnO2 catalyst and 82.2% with MnO2-sea urchin photocatalyst. This paper explored the correlations between shape-dependent chemical and structural factors of surface of a catalyst. The excellent performance of hierarchical MnO2 represents a potential heterogeneous catalyst for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Scheme 1
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wang Y C, Kan B, Yu Y, Pan K M, Liew L and Song Y 2017 Composites: Part A 95 173

    Article  CAS  Google Scholar 

  2. Crespo Y and Seriani N 2014 J. Mater. Chem. A 2 16538

    Article  CAS  Google Scholar 

  3. Cao J, Mao Q, Shi L and Qian Y 2011 J. Mater. Chem. 21 16210

    Article  CAS  Google Scholar 

  4. Wang X and Li Y D J 2002 J. Am. Chem. Soc. 124 2880

    Article  CAS  Google Scholar 

  5. Wang X and Li Y 2003 Chem. Eur. J. 9 300

    Article  Google Scholar 

  6. Subramanian V, Zhu H W, Vajtai R, Ajayan P M and Wei B Q 2005 J. Phys. Chem. B 109 20207

    Article  CAS  Google Scholar 

  7. Albering J H 1999 Handbook of battery materials. Part II: materials for aqueous electrolyte batteries, structural chemistry of manganese dioxide and related compounds (New York: McGraw-Hill)

    Google Scholar 

  8. Thackeray M M 1997 Prog. Solid State Chem. 25 1

    Article  CAS  Google Scholar 

  9. Chabre Y and Pannetier J 1995 Prog. Solid State Chem. 23 1

    Article  CAS  Google Scholar 

  10. Shen Y F, Zerger R P, DeGuzman R N, Suib S L, McCurdy L, Potter D I et al 1993 Science 260 511

    Article  CAS  Google Scholar 

  11. Duay J, Sherrill S A, Gui Z, Gillette E and Lee S B 2013 ACS Nano 7 1200

    Article  CAS  Google Scholar 

  12. Teng F, Santhanagopalan S and Meng D D 2010 Solid State Sci. 12 1677

    Article  CAS  Google Scholar 

  13. Kaur J and Pal B 2014 Catal. Commun. 53 25

    Article  CAS  Google Scholar 

  14. Rather R, Singh S and Pal B 2016 J. Ind. Eng. Chem. 37 288

    Article  CAS  Google Scholar 

  15. Kaur R and Pal B 2015 Appl. Catal. A: General 491 28

    Article  CAS  Google Scholar 

  16. Greenwood Norman N and Alan E 1985 Chemistry of the elements (Oxford: Pergamon Press)

    Google Scholar 

  17. Feng Q, Kanoh H and Ooi K 1999 J. Mater. Chem. 9 319

    Article  CAS  Google Scholar 

  18. Zhang Y X, Guo X L, Huang M, Hao X D, Yuan Y and Hua C 2015 J. Phys. Chem. Solids 83 40

    Article  Google Scholar 

  19. Zeng J, Nair J R, Francia C, Bodoardo S and Penazzi N 2013 Int. J. Electrochem. Sci. 8 3912

    CAS  Google Scholar 

  20. Débart A, Paterson A J, Bao J and Bruce P G 2008 Angew. Chem. 120 4597

    Article  Google Scholar 

  21. Meng Y, Song W, Huang H, Ren Z, Chen S Y and Suib S L 2014 J. Am. Chem. Soc. 136 11452

    Article  CAS  Google Scholar 

  22. Park M S, Kim J H, Kim K J, Jeong G and Kim Y J 2013 J. Nanosci. Nanotech. 13 3611

    Article  CAS  Google Scholar 

  23. Li Y, Wan Y, Zhan S, Guan Q and Tian Y 2016 RSC Adv. 6 54926

    Article  CAS  Google Scholar 

  24. Wang X and Li Y D J 2002 Am. Chem. Soc. 124 2880

    Article  CAS  Google Scholar 

  25. Yang X, Tang T, Feng Q and Ooi K 2003 Cryst. Growth Des. 3 409

    Article  CAS  Google Scholar 

  26. Selvakumar K, Senthil Kumar S M, Thangamuthu R, Ganesan K P, Murugan P, Rajput P et al 2015 J. Phys. Chem. C 119 6604

    Article  CAS  Google Scholar 

  27. Chen H and He J 2008 J. Phys. Chem. C 112 17540

    Article  CAS  Google Scholar 

  28. Pike J, Hanson J, Zhang L and Chan S W 2007 Chem. Mater. 19 5609

    Article  CAS  Google Scholar 

  29. Barai H R, Banerjee A R, Hamnabard N and Joo S W 2016 RSC Adv. 6 78887

    Article  CAS  Google Scholar 

  30. Aguilar-Tapia A, Delannoy L, Louis C, Han C W, Ortalan V and Zanella R 2016 J. Catal. 344 515

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to the Department of Science and Technology (DST), Government of India, for providing financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonamali Pal.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2860 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, S., Tinna, D. & Pal, B. Surface structure, morphology and crystal phase-dependent photoactivity of MnO2 nanocatalysts under sunlight. Bull Mater Sci 44, 231 (2021). https://doi.org/10.1007/s12034-021-02520-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02520-4

Keywords

Navigation