Skip to main content

Advertisement

Log in

Nickel sulphide flakes improved cone-shaped graphite electrode for high-performance OER activity

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The performance of electrochemical water splitting is very much affected by the sluggishness of oxygen evolution reaction (OER) process. Therefore, design and development of low cost, stable and active catalyst for OER process is a challenging issue. In this study we have used cone-shaped pencil graphite (PG), which is commonly used for writing purpose, as anode followed by modification by two-dimensional (2D) nickel sulphide flakes for electrochemical OER in alkaline medium. The dispersed flakes gradually attached to the cone-shaped graphite pencil surface via interaction with exposed graphite sheets along with formation of porous network around the electrode surface via assembly of the flakes. The modified electrocatalyst were well characterized using X-ray diffraction, Raman, field emission scanning electron microscopy, energy dispersive X-ray, inductively coupled plasma atomic emission spectroscopy and electrochemical techniques. We have observed that the electrocatalytic activity and stability of the newly designed anode is far greater than standard IrO2 catalyst-modified PG in alkaline medium and comparable with newly reported Ni-based catalysts modified electrode in literature. The unique shape and porous network facilitate mass diffusion process preventing larger bubble formation. Overall, the approach is very simple and cost effective.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Scheme 2
Figure 5

Similar content being viewed by others

References

  1. Jiao Y, Zheng Y, Jaroniec M and Qiao S Z 2015 Chem. Soc. Rev. 44 2060

    Article  CAS  Google Scholar 

  2. Roger I, Shipman M A and Symes M D 2017 Nat. Rev. 1 1

    Google Scholar 

  3. You B and Sun Y 2018 Acc. Chem. Res. 51 1571

    Article  CAS  Google Scholar 

  4. Hou J, Wu Y, Zhang B, Cao S, Li Z and Sun L 2019 Adv. Funct. Mater. 29 1808367

    Article  Google Scholar 

  5. Hu C, Zhang L and Gong J 2019 Energy Environ. Sci. 12 2620

    Article  CAS  Google Scholar 

  6. Atkins P and de Paula J 2009 Physical chemistry 9th edn (Oxford: W H Freeman)

  7. Castellan G W 1983 Physical chemistry (3rd edn) Addison-Wesley Publishing Company, Inc.

  8. Lee Y, Suntivich J, May K J, Perry E E and Shao-Horn Y 2012 J. Phys. Chem. Lett. 3 399

    Article  CAS  Google Scholar 

  9. Pfeifer V, Jones T E, Vélez J J V, Arrigo R, Piccinin S, Hävecker M et al 2017 Chem. Sci. 8 2143

    Article  CAS  Google Scholar 

  10. Luan C, Liu G, Liu Y, Yu L, Wang Y, Xiao Y et al 2018 ACS Nano 12 3875

    Article  CAS  Google Scholar 

  11. Shen L, Yu L, Wu H B, Yu X Y, Zhang X and Lou X W 2015 Nat. Commun. 6 6694

    Article  CAS  Google Scholar 

  12. Zhang C, Shao M, Zhou L, Li Z, Xiao K and Wei M 2016 ACS Appl. Mater. Interfaces 8 33697

    Article  CAS  Google Scholar 

  13. Wu T, Zhang S, Bu K, Zhao W, Bi Q, Lin T et al 2019 J. Mater. Chem. A 7 22063

    Article  CAS  Google Scholar 

  14. Dutta A, Samantara A K, Dutta S K, Jena B K and Pradhan N 2016 ACS Energy Lett. 1 169

    Article  CAS  Google Scholar 

  15. Dutta S, Indra A, Feng Y, Han H and Song T 2019 Appl. Cat. B-Envs. 241 521

    Article  CAS  Google Scholar 

  16. Tiwari A P, Yoon Y, Novak T G, An K S and Jeon S 2019 ACS Appl. Nano Mater. 2 5061

    Article  CAS  Google Scholar 

  17. Wan K, Luo J, Zhou C, Zhang T, Arbiol J, Lu X et al 2019 Adv. Funct. Mater. 29 1900315

    Article  Google Scholar 

  18. Li Y, Bu Y, Chen X, Zhu T, Wang J, Kawi S et al 2019 Chem. Cat. Chem. 11 1320

    CAS  Google Scholar 

  19. Fu H Q, Zhang L, Wang C W, Zheng L R, Liu P F and Yang H G 2018 ACS Energy Lett. 3 2021

    Article  CAS  Google Scholar 

  20. Han C, Li W, Shu C, Guo H, Liu H, Dou S et al 2019 ACS Appl. Energy Mater. 2 5363

    Article  CAS  Google Scholar 

  21. Zheng X, Han X, Zhang Y, Wang J, Zhong C, Deng Y et al 2019 Nanoscale 11 5646

    Article  CAS  Google Scholar 

  22. Ma M, Yang G, Wang H, Lu Y, Zhang B, Cao X et al 2019 Int. J. Hydrogen Energy 44 1544

    Article  CAS  Google Scholar 

  23. Jothi P R, Salunkhe R R, Pramanik M, Kannan S and Yamauchi Y 2016 RSC Adv. 6 21246

    Article  CAS  Google Scholar 

  24. Krishnamoorthy D and Prakasam A 2020 Inorg. Chem. Commun. 119 108063

  25. Dai Z, Geng H, Wang J, Luo Y, Li B, Zong Y et al 2017 ACS Nano 11 11031

    Article  CAS  Google Scholar 

  26. Liu D, Du Y, Li T, Zhang H, Liu D, Zhang W et al 2020 Chem. Commun. 56 11465

    Article  CAS  Google Scholar 

  27. Trasatti S and Petrii O A 1991 Pure Appl. Chem. 63 711

    Article  CAS  Google Scholar 

  28. McCrory C C L, Jung S, Peters J C and Jaramillo T F 2013 J. Am. Chem. Soc. 135 16977

    Article  CAS  Google Scholar 

  29. Sun X, Shao Q, Pi Y, Guo J and Huang X 2017 J. Mater. Chem. A 5 7769

    Article  CAS  Google Scholar 

  30. Gao M, Sheng W, Zhuang Z, Fang Q, Gu S, Jiang J et al 2014 J. Am. Chem. Soc. 136 7077

    Article  CAS  Google Scholar 

  31. Thangasamy P, Maruthapandian V, Saraswathy V and Sathish M 2017 Sci. Technol. 7 3591

    CAS  Google Scholar 

  32. Chen J S, Ren J, Shalom M, Fellinger T and Antonietti M 2016 ACS Appl. Mater. Interfaces 8 5509

    Article  CAS  Google Scholar 

  33. Wu L K, Wu W Y, Xia J, Cao H Z, Hou G Y, Tang Y P et al 2017 J. Mater. Chem. A 5 10669

    Article  CAS  Google Scholar 

  34. Stern L A and Hu X 2015 Faraday Discuss. 176 363

    Article  Google Scholar 

  35. Wang H Y, Hsu Y Y, Chen R, Chan T S, Chen H M and Liu B 2015 Adv. Energy Mater. 5 1500091

    Article  Google Scholar 

  36. Tahir M, Pan L, Zhang R, Wang Y C, Shen G, Aslam I et al 2017 ACS Energy Lett. 2 2177

    Article  CAS  Google Scholar 

  37. Trtochaud L, Young L S, Ranney J K and Boettcher S W 2014 J. Am. Chem. Soc. 136 6744

    Article  Google Scholar 

  38. Michael J D, Demeter E L, Illes S M, Fan Q, Boes J R and Kitchin J R 2015 J. Phys. Chem. C 119 11475

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AM would like to thank the Presidency University and Indian Association for the Cultivation of Science (IACS) for providing research facilities. HA and SG acknowledge DST, India, for providing research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avijit Mondal.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 8277 kb)

Supplementary file 2 (MP4 8161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H., Ghosh, S. & Mondal, A. Nickel sulphide flakes improved cone-shaped graphite electrode for high-performance OER activity. Bull Mater Sci 44, 230 (2021). https://doi.org/10.1007/s12034-021-02519-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02519-x

Keywords

Navigation