Skip to main content
Log in

FCC Matrix Components and Their Combination with Y Zeolite to Enhance the Deoxygenation of Bio-oils

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The immediate catalytic conversions of pyrolytic bio-oils from pine sawdust and soybean shell over mesoporous catalysts (silica, alumina, and silica-alumina) and their combinations with Y zeolite, were studied. The effect of mesoporosity and acidity on the bio-oil deoxygenation and conversion into hydrocarbons was investigated. Pyrolysis and immediate catalytic conversion of bio-oil were performed in an integrated pyrolysis–upgrading reactor, for 7 min under a 30-ml/min flow of nitrogen at 550 °C. Important differences were observed in the conversion of the bio-oils, according to the composition of the raw biomasses. Pine sawdust bio-oil produced more coke and less hydrocarbons in the range of gasoline than soybean shell bio-oil over all the catalysts. Mesoporous catalysts showed conversion and deoxygenation between 14 and 29 percentage points higher with the more acidic solid (SiO2-Al2O3) in the case of pine sawdust bio-oil and between 2 and 10 percentage points higher with the solid having the highest specific surface area (SiO2) in the case of soybean shell bio-oil. Among the compound catalysts, the best performance for the case of pine sawdust corresponded to the catalyst with the highest mesoporosity (Y/SiO2), while for soybean shell corresponded to the most acidic catalysts (Y/Al2O3 and Y/SiO2-Al2O3). Soybean shell bio-oil showed more low molecular weight compounds (less than 130 g mol−1), which diffuse more easily in the zeolite channels, thus favoring conversion and deoxygenation mechanisms. On the contrary, for pine sawdust bio-oil, the surface area contributed by the mesopores in the matrix played a key role in pre-cracking bulky molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Kumar R, Strezov V, Weldekidan H, He J, Singh S, Kan T, Dastjerdi B (2009) Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels. Renew Sust Energy Review 123:109763. https://doi.org/10.1016/j.rser.2020.109763

    Article  CAS  Google Scholar 

  2. Zacher AH, Elliott DC, Olarte MV, Wang H, Jones SB, Meyer PA (2019) Technology advancements in hydroprocessing of bio-oils. Biomass Bioenergy 12:151–168. https://doi.org/10.1016/j.biombioe.2019.04.015

    Article  CAS  Google Scholar 

  3. Valle B, Gayubo AG, Aguayo AT, Olazar M, Bilbao J (2010) Selective production of aromatics by crude bio-oil valorization with a nickel-modified HZSM-5 zeolite catalyst. Energy Fuels 24:2060–2070. https://doi.org/10.1021/ef901231j

    Article  CAS  Google Scholar 

  4. Al-Sabawi M, Chen J, Ng S (2012) Fluid catalytic cracking of biomass-derived oils and their blends with petroleum feedstocks: a review. Energy Fuels 26:5355–5372. https://doi.org/10.1021/ef3006417

    Article  CAS  Google Scholar 

  5. de Rezende PA, de Almeida MBB, Leal Mendes F, Casavechia LC, Talmadge MS, Kinchin CM, Chum HL (2017) Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production. Fuel 188:462–473. https://doi.org/10.1016/j.fuel.2016.10.032

    Article  CAS  Google Scholar 

  6. Fogassy G, Thegarid N, Toussaint G, van Veen A, Schuurman Y, Mirodatos C (2010) Biomass derived feedstock co-processing with vacuum gas oil for second-generation fuel production in FCC units. Appl Catal B 96:476–485. https://doi.org/10.1016/j.apcatb.2010.03.008

    Article  CAS  Google Scholar 

  7. Bertero M, Sedran U (2015) Co-processing of bio-oil in fluid catalytic cracking. In: Pandey A, Bhaskar T, Stocker M (eds.) Recent advances in thermo-chemical conversion of biomass. Amsterdam: Elsevier, pp 355–381. ISBN: 9780444632890

  8. Bertero M, García JR, Falco M, Sedran U (2020) Conversion of cow manure pyrolytic tar under FCC conditions over modified equilibrium catalysts. Waste Biomass Valorization 11:2925–2933. https://doi.org/10.1007/s12649-019-00588-y

    Article  CAS  Google Scholar 

  9. Thegarid N, Fogassy G, Schuurman Y, Mirodatos C, Stefanidis S, Iliopoulou I, Kalogiannis K, Lappas A (2014) Second generation biofuels by co-processing catalytic pyrolysis oil in FCC units. Appl Catal B Environ. 165:161–166. https://doi.org/10.1016/j.apcatb.2013.01.019

    Article  CAS  Google Scholar 

  10. Gueudrè L, Milina M, Mitchell S, Pérez-Ramírez J (2014) Coke chemistry under vacuum gasoil/bio-oil FCC co-processing conditions. Adv Funct Mater 24:209–219. https://doi.org/10.1016/j.cattod.2014.09.001

    Article  CAS  Google Scholar 

  11. Rezaei P, Shafaghat H, Ashri W, Daud W (2014) Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: a review. Appl Catal A Gen 469:490–511. https://doi.org/10.1016/j.apcata.2013.09.036

    Article  CAS  Google Scholar 

  12. Adam J, Antonakou E, Lappas A, Stöcker M, Nilsen MH, Bouzga A, Hustad JE, Øye G (2006) In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Microporous Mesoporous Mater 96:93–101. https://doi.org/10.1016/j.micromeso.2006.06.021

    Article  CAS  Google Scholar 

  13. Adjaye J, Bakhshi N (1995) Production of hydrocarbons by catalytic: upgrading of a fast pyrolysis bio-oil. Part II: comparative catalyst performance and reaction pathways. Fuel Process Technol 45:185–202. https://doi.org/10.1016/0378-3820(95)00040-E

    Article  CAS  Google Scholar 

  14. Valle B, Castaño P, Olazar M, Bilbao J, Gayubo AG (2012) Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst. J Catal 285:304–314. https://doi.org/10.1016/j.jcat.2011.10.004

    Article  CAS  Google Scholar 

  15. García JR, Bertero M, Falco M, Sedran U (2015) Catalytic cracking of bio-oils improved by the formation of mesopores by means of Y zeolite desilication. Appl Catal A Gen 503:1–8. https://doi.org/10.1016/j.apcata.2014.11.005

    Article  CAS  Google Scholar 

  16. Eschenbacher A, Jensen PA, Henriksen UB, Ahrenfeldt A, Li C, Duus JØ, Mentzel UV, Jensen AD (2019) Deoxygenation of wheat straw fast pyrolysis vapors using HZSM-5, Al2O3, HZSM-5/Al2O3 extrudates, and desilicated HZSM-5/Al2O3 extrudates. Energy Fuels 33:6405–6420. https://doi.org/10.1021/acs.energyfuels.9b00906

    Article  CAS  Google Scholar 

  17. Scherzer J (1989) Octane-enhancing, zeolitic FCC catalysts: scientific and technical aspects. Catal Rev Sci Eng 31:215–254. https://doi.org/10.1080/01614948909349934

    Article  CAS  Google Scholar 

  18. Wojciechowski B, Corma A, Dekker M (1986) Catalytic cracking: catalysts, chemistry and kinetics, Meisel SL (ed), New York: AIChE J, 236. https://doi.org/10.1002/aic.690330925

  19. Gayubo AG, Aguayo AT, Atutxa A, Aguado R, Bilbao J (2004) Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. Alcohols and phenols. Ind Eng Chem Res 43:2610–2618. https://doi.org/10.1021/ie030791o

    Article  CAS  Google Scholar 

  20. Gayubo AG, Aguayo AT, Atutxa A, Aguado R, Olazar M, Bilbao J (2004) Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 Zeolite. II. Aldehydes, ketones and acids. Ind Eng Chem Res 43:2619–2626. https://doi.org/10.1021/ie030792g

    Article  CAS  Google Scholar 

  21. Bertero M, Sedran U (2013) Upgrading of bio-oils over equilibrium FCC catalysts. Contribution from alcohols, phenols and aromatic ethers. Catal Today 212:10–15. https://doi.org/10.1016/j.cattod.2013.03.016

    Article  CAS  Google Scholar 

  22. Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81(8):1051–1063. https://doi.org/10.1016/S0016-2361(01)00131-4

    Article  CAS  Google Scholar 

  23. Magee JS, Blazek JJ (1976) Zeolite chemistry and catalysis, Rabo JA (ed.), ACSM N° 171, Washington, 796 p. ISBN 9780841202764

  24. Johnson MFL (1978) Estimation of the zeolite content of a catalyst from nitrogen adsorption isotherms. J Catal 52:425–431. https://doi.org/10.1016/0021-9517(78)90346-9

    Article  CAS  Google Scholar 

  25. Bertero M, de la Puente G, Sedran U (2012) Fuels from bio-oils. Bio-oil production from different sources, characterization and thermal conditioning. Fuel 95:263–271. https://doi.org/10.1016/j.fuel.2011.08.041

    Article  CAS  Google Scholar 

  26. Gayubo AG, Valle B, Aguayo A, Olazar M, Bilbao J (2010) Olefin production by catalytic transformation of crude bio-oil in a two-step process. Ind Eng Chem Res 49:123–131. https://doi.org/10.1021/ie901204n

    Article  CAS  Google Scholar 

  27. Gilbert W, Morgado E, de Abreu M, de la Puente G, Passamonti F, Sedran U (2011) A novel fluid catalytic cracking approach for producing low aromatic LCO. Fuel Process Technol 92:2235–2240. https://doi.org/10.1016/j.fuproc.2011.07.006

    Article  CAS  Google Scholar 

  28. Seddegi ZS, Budrthumal U, Al-Arfaj AA, Al-Amer AM, Barri SA (2002) Catalytic cracking of polyethylene over all-silica MCM-41 molecular sieve. App Catal A: Gen 225:167–176. https://doi.org/10.1016/S0926-860X(01)00872-9

    Article  CAS  Google Scholar 

  29. Bertero M, Sedran U (2016) Immediate catalytic upgrading of soybean shell bio-oil. Energy 94:171–179. https://doi.org/10.1016/j.energy.2015.10.114

    Article  CAS  Google Scholar 

  30. Yang S, Wu M, Wu C (2014) Application of biomass fast pyrolysis part I: pyrolysis characteristics and products. Energy 66:162–171. https://doi.org/10.1016/j.energy.2013.12.063

    Article  CAS  Google Scholar 

  31. Pütün A, Apaydin E, Pütün E (2002) Bio-oil production from pyrolysis and steam pyrolysis of soybean cake: products yields and composition. Energy 27:703–710. https://doi.org/10.1016/S0360-5442(02)00015-4

    Article  Google Scholar 

  32. Iliopoulou E, Antonakou E, Karakoulia S, Vasalos I, Lappas A, Triantafyllidis K (2007) Catalytic conversion of biomass pyrolysis products by mesoporous materials: effect of steam stability and acidity of Al-MCM-41 catalysts. Chem Eng J 134:51–57. https://doi.org/10.1016/j.cej.2007.03.066

    Article  CAS  Google Scholar 

  33. Cerqueira H, Caeiro G, Costa L, Ramôa Ribeiro F (2008) Deactivation of FCC catalysts. J Molec Catal A: Chemical 292:1–13. https://doi.org/10.1016/j.molcata.2008.06.014

    Article  CAS  Google Scholar 

  34. Lappas AA, Samolada MC, Iatridis DK, Voutetakis SS, Vasalos IA (2002) Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals. Fuel 81:2087–2095. https://doi.org/10.1016/S0016-2361(02)00195-3

    Article  CAS  Google Scholar 

  35. Bertero M, de la Puente G, Sedran U (2013) Products and coke from the conversion of bio-oil acids, esters, aldehydes and ketones over equilibrium FCC catalysts. Renew Energy 60:349–354. https://doi.org/10.1016/j.renene.2013.04.017

    Article  CAS  Google Scholar 

  36. Corma A, Huber G, Sauvanaud L, O’Connor P (2007) Processing biomass-derived oxygenates in the oil refinery: catalytic cracking (FCC) reaction pathways and role of catalyst. J Catal 247:307–327. https://doi.org/10.1016/j.jcat.2007.01.023

    Article  CAS  Google Scholar 

  37. Moldoveanu SC (2019) Pyrolysis of organic molecules with applications to health and environmental issues - techniques and instrumentation in analytical chemistry. 2nd Edition https://doi.org/10.1016/B978-0-444-64000-0.00001-9

  38. Adjaye JD, Bakhshi NN (1995) Catalytic conversion of a biomass-derived oil to fuels and chemicals I: model compound studies and reaction pathways. Biomass Bioenergy 8:131–149. https://doi.org/10.1016/0961-9534(95)00018-3

    Article  CAS  Google Scholar 

  39. Chantal P, Kaliaguine S, Grandmaison JL (1985) Reactions of phenolic compounds over HZSM-5. Appl Catal 18:133–145. https://doi.org/10.1016/S0166-9834(00)80304-8

    Article  CAS  Google Scholar 

  40. Wang S, Cai Q, Chen J, Zhang L, Zhu L, Luo Z (2015) Co-cracking of bio-oil model compound mixtures and ethanol over different metal oxide-modified HZSM-5 catalysts. Fuel 160:534–543. https://doi.org/10.1016/j.fuel.2015.08.011

    Article  CAS  Google Scholar 

  41. Wang S, Guo Z, Cai Q, Guo L (2012) Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production. Biomass Bioenergy 45:138–143. https://doi.org/10.1016/j.biombioe.2012.05.023

    Article  CAS  Google Scholar 

  42. Chen G, Zhang R, Ma W, Liu B, Li X, Yan B, Cheng Z, Wang T (2018) Catalytic cracking of model compounds of bio-oil over HZSM-5 and the catalyst deactivation. Sci Total Environ 631–632:1611–1622. https://doi.org/10.1016/j.scitotenv.2018.03.147

    Article  CAS  PubMed  Google Scholar 

  43. Chen G, Liu J, Li X, Zhang J, Yin H, Su Z (2020) Investigation on catalytic hydrodeoxygenation of eugenol blend with light fraction in bio-oil over Ni-based catalysts. Renew Energy 157:456–465. https://doi.org/10.1016/j.renene.2020.05.040

    Article  CAS  Google Scholar 

  44. Chen W, Luo Z, Yu C, Yang Y, Li G, Zhang J (2014) Catalytic conversion of guaiacol in ethanol for bio-oil upgrading to stable oxygenated organics. Fuel Process Technol 126:420–428. https://doi.org/10.1016/j.fuproc.2014.05.022

    Article  CAS  Google Scholar 

  45. Venkatesan K, Krishna JVJ, Anjana S, Selvam P, Vinu R (2021) Hydrodeoxygenation kinetics of syringol, guaiacol and phenol over H-ZSM-5. Catal Commun 148:106–164. https://doi.org/10.1016/j.catcom.2020.106164

    Article  CAS  Google Scholar 

  46. Adjaye JD, Katikaneni SPR, Bakhshi NN (1996) Catalytic conversion of a biofuel to hydrocarbons: effect of mixtures of HZSM-5 and silica-alumina catalysts on product distribution. Fuel Proc Tech 48:115–143. https://doi.org/10.1016/S0378-3820(96)01031-4

    Article  CAS  Google Scholar 

  47. Olazar M, Aguado R, Barona A, Bilbao J (2000) Pyrolysis of sawdust in a conical spouted bed reactor with a HZSM-5 catalyst. AIChE J 46:1025–1033. https://doi.org/10.1002/aic.690460514

    Article  CAS  Google Scholar 

  48. Ibarra A, Hita I, Azkoiti MJ, Arandes JM, Bilbao J (2019) Catalytic cracking of raw bio-oil under FCC unit conditions over different zeolite-based catalysts. J Ind Eng Chem 78:372–382. https://doi.org/10.1016/j.jiec.2019.05.032

    Article  CAS  Google Scholar 

  49. Naqvi SR, Uemura Y, Yusup S, Sugiur Y, Nishiyama N, Naqvi M (2015) The role of zeolite structure and acidity in catalytic deoxygenation of biomass pyrolysis vapors. Energy Procedia 75:793–800. https://doi.org/10.1016/j.egypro.2015.07.126

    Article  CAS  Google Scholar 

  50. Mochizuki T, Atong D, Chen SY, Toba M, Yoshimura Y (2013) Effect of SiO2 pore size on catalytic fast pyrolysis of Jatropha residues by using pyrolyzer-GC/MS Cat. Comm 26:1–4. https://doi.org/10.1016/j.catcom.2013.02.018

    Article  CAS  Google Scholar 

  51. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Lappas AA, Pilavachi PA (2011) In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor. Biores Tech 102:8261–8267. https://doi.org/10.1016/j.biortech.2011.06.032

    Article  CAS  Google Scholar 

  52. Carlson T, Tompsett G, Conner W, Huber G (2009) Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 52:241–252. https://doi.org/10.1007/s11244-008-9160-6

    Article  CAS  Google Scholar 

  53. Park H, Dong J, Jeon J, SeunYoo K, Yim J, Min Sohn J, Park Y (2007) Conversion of the pyrolytic vapor of radiata pine over zeolites. J Ind Eng Chem 13:182–189

    CAS  Google Scholar 

  54. Graça I, Ramôa Ribeiro F, Cerqueira HS, Lam YL, de Almeida MBB (2009) Catalytic cracking of mixtures of model bio-oil compounds and gasoil. App Catal B: Env 90:556–563. https://doi.org/10.1016/j.apcatb.2009.04.010

    Article  CAS  Google Scholar 

  55. Gong F, Yang Z, Hong C, Huang W, Ning S, Zhang Z, Xu Y, Li Q (2011) Selective conversion of bio-oil to light olefins: controlling catalytic cracking for maximum olefins. Bior Tech 102:9247–9254. https://doi.org/10.1016/j.biortech.2011.07.009

    Article  CAS  Google Scholar 

  56. Bertero M, García JR, Falco M, Sedran U (2017) Hydrocarbons from bio-oils: performance of the matrix in FCC catalysts in the immediate catalytic upgrading of different raw bio-oils. Waste Biomass Valor 8:933–948. https://doi.org/10.1007/s12649-016-9624-z

    Article  CAS  Google Scholar 

  57. de la Puente G, Falabella E, Sousa-Aguiar M, Figueiredo Costa A, Sedran U (2003) The influence on selectivity of the aluminum content in the matrix of FCC catalysts. Appl Catal A: General 242:381–391. https://doi.org/10.1016/S0926-860X(02)00526-4

    Article  CAS  Google Scholar 

  58. Samolada M, Papafotica A, Vasalos I (2000) Catalyst evaluation for catalytic biomass pyrolysis. Energy Fuels 14:1161–1167. https://doi.org/10.1021/ef000026b

    Article  CAS  Google Scholar 

  59. Fuhse J, Bandermann F (1987) Conversion of organic oxygenated compounds and their mixtures on H-ZSM5. Chem Eng Technol 10:323–329. https://doi.org/10.1002/ceat.270100139

    Article  Google Scholar 

  60. To AT, Resasco D (2014) Role of a phenolic pool in the conversion of m-cresol to aromatics over HY and HZSM-5 zeolites. Appl Catal A: Gral 487:62–71. https://doi.org/10.1016/j.apcata.2014.09.006

    Article  CAS  Google Scholar 

  61. Gayubo AG, Aguayo A, Atutxa A, Prieto R, Bilbao J (2004) Deactivation of a HZSM-5 zeolite catalyst in the transformation of the aqueous fraction of biomass pyrolysis oil into hydrocarbons. Energy Fuels 18:1640–1647. https://doi.org/10.1021/ef040027u

    Article  CAS  Google Scholar 

  62. Ibáñez M, Valle B, Bilbao J, Gayubo AG, Castaño P (2012) Effect of operating conditions on the coke nature and HZSM-5 catalysts deactivation in the transformation of crude bio-oil into hydrocarbons. Catal Today 195:106–113. https://doi.org/10.1016/j.cattod.2012.04.030

    Article  CAS  Google Scholar 

  63. Zhou S, Garcia-Perez M, Pecha B, Kersten SRA, McDonald AG, Westerhof RJM (2013) Effect of the fast pyrolysis temperature on the primary and secondary products of lignin. Energy Fuels 27:5867–5877. https://doi.org/10.1021/ef4001677

    Article  CAS  Google Scholar 

  64. Bai X, Kim KH, Brown RC, Dalluge E, Hutchinson C, Lee YJ, Dalluge D (2014) Formation of phenolic oligomers during fast pyrolysis of lignin. Fuel 128:170–179. https://doi.org/10.1016/j.fuel.2014.03.013

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out with financial support of the University of Litoral (UNL, Santa Fe, Argentina), Secretary of Science and Technology, Proj. CAID 50420150100068LI, and the National Agency for Scientific and Technological Promotion (ANPCyT), PICT 1208/2016.

Author information

Authors and Affiliations

Authors

Contributions

Investigation, formal analysis, writing—original draft, data curation, conceptualization: Melisa Bertero and Juan Rafael García. Visualization, conceptualization, supervision, methodology, resources, project administration: Marisa Falco and Ulises Sedran. Writing—review and editing, funding acquisition: Ulises Sedran.

Corresponding author

Correspondence to Ulises Sedran.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertero, M., García, J.R., Falco, M. et al. FCC Matrix Components and Their Combination with Y Zeolite to Enhance the Deoxygenation of Bio-oils. Bioenerg. Res. 15, 1327–1341 (2022). https://doi.org/10.1007/s12155-021-10322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10322-z

Keywords

Navigation