Skip to main content

Advertisement

Log in

Torrefaction of Densified Woody Biomass: The Effect of Pellet Size on Thermochemical and Thermophysical Characteristics

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Thermal pretreatment by torrefaction is known to produce improved properties in biomass fuels, but the role of pellet size on key properties in commercially available hardwood derived fuel has not been investigated to date. In this study, densified Australian woody biomass was torrefied over different temperatures (250–300 °C), time (30 and 60 min) and mean pellet size (7 ± 0.5 mm and 15 ± 0.5 mm). Benchmarking, relative to raw fuel properties, is reported in terms of proximate analysis, high heating value (HHV) and water immersion tests as well as FTIR and thermal stability (TGA). Significant differences of 23.55% in mass loss (ML) and 10% in hygroscopic behaviour were observed at varied pellet size. FTIR analysis of the samples identified reduction of polar species such as the hydroxyl (-OH) functional group during torrefaction. This increased the hydrophobicity of torrefied pellets. Torrefaction of larger sized pellets was also accompanied with lower hemicellulose and cellulose degradation. A correlation predicted the HHV of the torrefied pellets which fits well with the actual HHV’s of the wide body of literature with an average difference of less than 1 MJ/kg. Pellet sizing was found to impact the fuel properties only at milder torrefaction conditions. As such, with the increase in torrefaction severity, the effect of pellet size became insignificant. The outcomes emphasise the need to describe pellet size distributions when reporting torrefaction performance indicators, particularly if commercial scale torrefaction is used at higher temperatures and longer times.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. IRENA working paper (2013) Statistical issues: bioenergy and distributed renewable energy. Available online https://irena.org/publications/2013/Jun/Statistical-Issues-Bioenergy-and-Distributed-Renewable-Energy. Accessed 19 Jan 2021

  2. Chen W-H, Peng J, Bi XT (2015) A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sust Energy Rev 44:847–866. https://doi.org/10.1016/j.rser.2014.12.039

    Article  CAS  Google Scholar 

  3. Barskov S, Zappi M, Buchireddy P, Dufreche S, Guillory J, Gang D, Hernandez R, Bajpai R, Baudier J, Cooper R (2019) Torrefaction of biomass: a review of production methods for biocoal from cultured and waste linocellulosic feedstocks. Renew Energy 142:624–642. https://doi.org/10.1016/j.renene.2019.04.068

    Article  CAS  Google Scholar 

  4. Chen W-H, Lu K-M, Tsai C-M (2012) An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Appl Energy 100:318–325. https://doi.org/10.1016/j.apenergy.2012.05.056

    Article  CAS  Google Scholar 

  5. Uslu A, Faaij AP, Bergman PC (2008) Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy 33(8):1206–1223. https://doi.org/10.1016/j.energy.2008.03.007

    Article  Google Scholar 

  6. Bergman PC, Boersma A, Zwart R, Kiel J (2005) Torrefaction for biomass co-firing in existing coal-fired power stations. Energy Research Centre of the Netherlands. Technical Report No. ECN-C-05-013. Available online https://publicaties.ecn.nl/PdfFetch.aspx?nr=ECN-C--05-013. Accessed 14 Jan 2021

  7. Bridgeman TG, Jones JM, Shield I, Williams PT (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87(6):844–856. https://doi.org/10.1016/j.fuel.2007.05.041

    Article  CAS  Google Scholar 

  8. Prins MJ, Ptasinski KJ, Janssen FJJG (2006) More efficient biomass gasification via torrefaction. Energy 31(15):3458–3470. https://doi.org/10.1016/j.energy.2006.03.008

    Article  CAS  Google Scholar 

  9. Ndibe C, Grathwohl S, Paneru M, Maier J, Scheffknecht G (2015) Emissions reduction and deposits characteristics during cofiring of high shares of torrefied biomass in a 500kW pulverized coal furnace. Fuel 156:177–189. https://doi.org/10.1016/j.fuel.2015.04.017

    Article  CAS  Google Scholar 

  10. Murdock HE, Gibb D, André T, Sawin JL, Brown A, Appavou F, Ellis G, Epp B, Guerra F, Joubert F (2020) Renewables 2020-Global status report. Avialable online https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf. Accessed 21 Jan 2021

  11. Ghiasi B, Kumar L, Furubayashi T, Lim CJ, Bi X, Kim CS, Sokhansanj S (2014) Densified biocoal from woodchips: is it better to do torrefaction before or after densification? Appl Energy 134:133–142. https://doi.org/10.1016/j.apenergy.2014.07.076

    Article  CAS  Google Scholar 

  12. Manouchehrinejad M, Mani S (2018) Torrefaction after pelletization (TAP): Analysis of torrefied pellet quality and co-products. Biomass Bioenerg 118:93–104. https://doi.org/10.1016/j.biombioe.2018.08.015

    Article  CAS  Google Scholar 

  13. Chen W-H, Zhuang Y-Q, Liu S-H, Juang T-T, Tsai C-M (2016) Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres. Bioresour Technol 199:367–374. https://doi.org/10.1016/j.biortech.2015.08.066

    Article  CAS  PubMed  Google Scholar 

  14. Brachi P, Chirone R, Miccio M, Ruoppolo G (2018) Fluidized bed torrefaction of commercial wood pellets: process performance and solid product quality. Energy Fuel 32(9):9459–9469. https://doi.org/10.1021/acs.energyfuels.8b01519

    Article  CAS  Google Scholar 

  15. Setkit N, Li X, Yao H, Worasuwannarak N (2021) Torrefaction behavior of hot-pressed pellets prepared from leucaena wood. Bioresour Technol 321:124502. https://doi.org/10.1016/j.biortech.2020.124502

    Article  CAS  PubMed  Google Scholar 

  16. Liu X, Yao Z, Zhao L, Song J, Jia J (2020) Torrefaction of sorghum straw pellets in a stationary reactor with a feeding Screw. Energy Fuel 34(5):5997–6007. https://doi.org/10.1021/acs.energyfuels.0c00531

    Article  CAS  Google Scholar 

  17. Wang L, Riva L, Skreiberg Ø, Khalil R, Bartocci P, Yang Q, Yang H, Wang X, Chen D, Rudolfsson M (2020) Effect of torrefaction on properties of pellets produced from woody biomass. Energy Fuel 34(12):15343–15354. https://doi.org/10.1021/acs.energyfuels.0c02671

    Article  CAS  Google Scholar 

  18. Lu K-M, Lee W-J, Chen W-H, Liu S-H, Lin T-C (2012) Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresour Technol 123:98–105. https://doi.org/10.1016/j.biortech.2012.07.096

    Article  CAS  PubMed  Google Scholar 

  19. Basu P, Rao S, Acharya B, Dhungana A (2013) Effect of torrefaction on the density and volume changes of coarse biomass particles. Can J Chem Eng 91(6):1040–1044. https://doi.org/10.1002/cjce.21817

    Article  CAS  Google Scholar 

  20. Yu S, Park J, Kim M, Kim H, Ryu C, Lee Y, Yang W, Jeong Y-g (2019) Improving energy density and grindability of wood pellets by dry torrefaction. Energy Fuel 33(9):8632–8639. https://doi.org/10.1021/acs.energyfuels.9b01086

    Article  CAS  Google Scholar 

  21. Bridgeman T, Jones J, Williams A, Waldron D (2010) An investigation of the grindability of two torrefied energy crops. Fuel 89(12):3911–3918. https://doi.org/10.1016/j.fuel.2010.06.043

    Article  CAS  Google Scholar 

  22. Peng J, Bi H, Sokhansanj S, Lim J (2012) A study of particle size effect on biomass torrefaction and densification. Energy Fuel 26(6):3826–3839. https://doi.org/10.1021/ef3004027

    Article  CAS  Google Scholar 

  23. ASTM International E873–82 (2019) Standard test method for bulk density of densified particulate biomass fuels. Am Soc Mater Test Int. https://doi.org/10.1520/E0873-82R19

    Article  Google Scholar 

  24. ASTM International E871–82 (2019) Standard test method for moisture analysis of particulate wood fuels. Am Soc Mater Test Int. https://doi.org/10.1520/E0871-82R19

    Article  Google Scholar 

  25. ASTM International, E872-82 (2019) Standard test method for volatile matter in the analysis of particulate wood fuels. Am Soc Mater Test Int. https://doi.org/10.1520/E0872-82R19

    Article  Google Scholar 

  26. ASTM International D1102–84 (2021) Standard test method for ash in wood. Am Soc Mater Test Int. https://doi.org/10.1520/D1102-84R21

    Article  Google Scholar 

  27. ASTM International D5865–12 (2012) Standard test method for gross calorific value of coal and coke. Am Soc Mater Test Int. https://doi.org/10.1520/D5865-12

    Article  Google Scholar 

  28. Arteaga-Pérez LE, Grandón H, Flores M, Segura C, Kelley SS (2017) Steam torrefaction of Eucalyptus globulus for producing black pellets: a pilot-scale experience. Bioresour Technol 238:194–204. https://doi.org/10.1016/j.biortech.2017.04.037

    Article  CAS  PubMed  Google Scholar 

  29. Chen W-H, Huang M-Y, Chang J-S, Chen C-Y, Lee W-J (2015) An energy analysis of torrefaction for upgrading microalga residue as a solid fuel. Bioresour Technol 185:285–293. https://doi.org/10.1016/j.biortech.2015.02.095

    Article  CAS  PubMed  Google Scholar 

  30. Chen D, Gao A, Cen K, Zhang J, Cao X, Ma Z (2018) Investigation of biomass torrefaction based on three major components: hemicellulose, cellulose, and lignin. Energy Conversat Manag 169:228–237. https://doi.org/10.1016/j.enconman.2018.05.063

    Article  CAS  Google Scholar 

  31. Basu P, Rao S, Dhungana A (2013) An investigation into the effect of biomass particle size on its torrefaction. Can J Chem Eng 91(3):466–474. https://doi.org/10.1002/cjce.21710

    Article  CAS  Google Scholar 

  32. Ibrahim RH, Darvell LI, Jones JM, Williams A (2013) Physicochemical characterisation of torrefied biomass. J Anal Appl Pyrolysis 103:21–30. https://doi.org/10.1016/j.jaap.2012.10.004

    Article  CAS  Google Scholar 

  33. Saleh SB, Hansen BB, Jensen PA, Dam-Johansen K (2013) Influence of biomass chemical properties on torrefaction characteristics. Energy Fuel 27(12):7541–7548. https://doi.org/10.1021/ef401788m

    Article  CAS  Google Scholar 

  34. Stoklosa RJ, Hodge DB (2012) Extraction, recovery, and characterization of hardwood and grass hemicelluloses for integration into biorefining processes. Ind Eng Chem Res 51(34):11045–11053. https://doi.org/10.1021/ie301260w

    Article  CAS  Google Scholar 

  35. Chen W-H, Kuo P-C (2011) Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy 36(11):6451–6460. https://doi.org/10.1016/j.energy.2011.09.022

    Article  CAS  Google Scholar 

  36. Peng J, Wang J, Bi XT, Lim CJ, Sokhansanj S, Peng H, Jia D (2015) Effects of thermal treatment on energy density and hardness of torrefied wood pellets. Fuel Process Technol 129:168–173. https://doi.org/10.1016/j.fuproc.2014.09.010

    Article  CAS  Google Scholar 

  37. Phanphanich M, Mani S (2011) Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol 102(2):1246–1253. https://doi.org/10.1016/j.biortech.2010.08.028

    Article  CAS  PubMed  Google Scholar 

  38. Tran K-Q, Luo X, Seisenbaeva G, Jirjis R (2013) Stump torrefaction for bioenergy application. Appl Energy 112:539–546. https://doi.org/10.1016/j.apenergy.2012.12.053

    Article  Google Scholar 

  39. Granados D, Basu P, Chejne F, Nhuchhen D (2017) Detailed investigation into torrefaction of wood in a two-stage inclined rotary torrefier. Energy Fuel 31(1):647–658. https://doi.org/10.1021/acs.energyfuels.6b02524

    Article  CAS  Google Scholar 

  40. Yu Y, Zhu Z, Wang L, Wang G, Bai X (2021) Effect of torrefaction treatment on physical and fuel properties of Caragana (Caragana korshinskii) pellets. Bioenergy Res Document type: Early Access. https://doi.org/10.1007/s12155-020-10235-3

  41. Granados D, Ruiz R, Vega L, Chejne F (2017) Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process. Energy 139:818–827. https://doi.org/10.1016/j.energy.2017.08.013

    Article  CAS  Google Scholar 

  42. Kim R-G, Li D, Jeon C-H (2014) Experimental investigation of ignition behavior for coal rank using a flat flame burner at a high heating rate. Exp Therm Fluid Sci 54:212–218. https://doi.org/10.1016/j.expthermflusci.2013.12.017

    Article  CAS  Google Scholar 

  43. Malgas S, Minghe VK, Pletschke B (2020) The effect of hemicellulose on the binding and activity of cellobiohydrolase I, Cel7A, from Trichoderma reesei to cellulose. Cellulose 27(2):781–797. https://doi.org/10.1007/s10570-019-02848-5

    Article  CAS  Google Scholar 

  44. Tang Y, Chandra RP, Sokhansanj S, Saddler JN (2018) The role of biomass composition and steam treatment on durability of pellets. Bioenergy Res 11(2):341–350. https://doi.org/10.1007/s12155-018-9900-9

    Article  CAS  Google Scholar 

  45. Liu Q, Wang S, Zheng Y, Luo Z, Cen K (2008) Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. J Anal Appl Pyrolysis 82(1):170–177. https://doi.org/10.1016/j.jaap.2008.03.007

    Article  CAS  Google Scholar 

  46. Faix O (1992) Fourier transform infrared spectroscopy. In: Lin SY, Dence CW (eds) Springer Series in Wood Science. Springer, Berlin, pp 83–109. https://doi.org/10.1007/978-3-642-74065-7_7

    Chapter  Google Scholar 

  47. Park J, Meng J, Lim KH, Rojas OJ, Park S (2013) Transformation of lignocellulosic biomass during torrefaction. J Anal Appl Pyrolysis 100:199–206. https://doi.org/10.1016/j.jaap.2012.12.024

    Article  CAS  Google Scholar 

  48. Pandey K, Pitman A (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeterior Biodegrad 52(3):151–160. https://doi.org/10.1016/S0964-8305(03)00052-0

    Article  CAS  Google Scholar 

  49. Mahadevan R, Adhikari S, Shakya R, Wang K, Dayton DC, Li M, Pu Y, Ragauskas AJ (2016) Effect of torrefaction temperature on lignin macromolecule and product distribution from HZSM-5 catalytic pyrolysis. J Anal Appl Pyrolysis 122:95–105. https://doi.org/10.1016/j.jaap.2016.10.011

    Article  CAS  Google Scholar 

  50. Nhuchhen DR, Afzal MT, Parvez AM (2021) Effect of torrefaction on the fuel characteristics of timothy hay. Biofuels 12(4):391–404. https://doi.org/10.1080/17597269.2018.1479135

  51. Prins MJ, Ptasinski KJ, Janssen FJ (2006) Torrefaction of wood: Part 1. Weight loss kinetics. J Anal Appl Pyrolysis 77(1):28–34. https://doi.org/10.1016/j.jaap.2006.01.002

    Article  CAS  Google Scholar 

  52. Kim U-J, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95(5):778–781. https://doi.org/10.1016/j.polymdegradstab.2010.02.009

    Article  CAS  Google Scholar 

  53. Ren S, Lei H, Wang L, Bu Q, Chen S, Wu J (2013) Thermal behaviour and kinetic study for woody biomass torrefaction and torrefied biomass pyrolysis by TGA. Biosyst Eng 116(4):420–426. https://doi.org/10.1016/j.biosystemseng.2013.10.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the School of Engineering, ECU, Joondalup, Australia, and the Fire Safety and Combustion Kinetics Research Laboratory, Murdoch University, South Perth, Australia, for providing the laboratory facilities used in this research work.

Funding

The first author is grateful to the financial support provided by the Higher Education Commission (HEC, Pakistan) and Edith Cowan University (ECU, Australia) for the PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajid Riaz.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3981 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, S., Al-Abdeli, Y.M., Oluwoye, I. et al. Torrefaction of Densified Woody Biomass: The Effect of Pellet Size on Thermochemical and Thermophysical Characteristics. Bioenerg. Res. 15, 544–558 (2022). https://doi.org/10.1007/s12155-021-10319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10319-8

Keywords

Navigation