Skip to main content

Advertisement

Log in

Production and Characterization of Low-Ash Empty Fruit Bunches Pellets as a Solid Biofuel

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

In searching for lignocellulosic-based alternative pellets, quality is key, ash in particular, for market acceptance and penetration. One such feedstock of growing importance, pressed empty fruit bunches (EFB) fibres, was exploited in this study via 3 different physical pretreatment methods (Tests 1–3) prior to pre-pelletising in an industrial-scale plant for improving the ash content. The ash removal effects on quality of resultant pelletised EFB (in terms of fuel and physicochemical properties) were assessed and compared with commercial pellets based on available standards. The combined sieved and water sprayed feedstock (Test 3), 1.60 wt.% ash content (pre-pelletising), yielded EFB pellets with correspondingly better ash quality (1.58 wt.%, post-pelletising) than the sieved only (Test 2) option, 2.78 wt.% and 3.63 wt.%, and the untreated (control, Test 1), 4.07 wt.% and 4.66 wt.%, respectively. Besides, all the pretreated feedstocks/biopellets exhibited much improved proximate and ultimate properties, bulk density and calorific value (≤ 18 MJ kg−1) after pre-pelletising/pelletising steps due to size reduction and drying. Both treatments (Tests 2–3) were able to produce lignocellulosic-based EFB pellets with fuel properties comparable to non-wood pellets, except for durability index (≤ 95%) and chlorine content (> 0.2 wt.%). In terms of wood pellets, Test 3 showed an advanced quality for ash compliance and reduction of unwanted ash-inducing elements, chlorine and potassium in particular, with > 40% removal efficiency. Henceforth, the combined sieving and spray water washing physical treatment of a high-ash lignocellulosic biomass offers an immediate low-hanging approach for practical utilisation and improvement of ash-related fuel properties of commercial solid biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data analysed in this manuscript are available from the corresponding author upon request.

References

  1. Popp J, Kovács S, Oláh J, Divéki Z, Balázs E (2020) Bioeconomy: biomass and biomass-based energy supply and demand. New Biotechnol 60:76–84. https://doi.org/10.1016/j.nbt.2020.10.004

    Article  CAS  Google Scholar 

  2. Loh SK (2017) The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Convers Manag 141:285–298. https://doi.org/10.1016/j.enconman.2016.08.081

    Article  CAS  Google Scholar 

  3. Nasrin AB, Vijaya S, Loh SK, Astimar AA, Lim WS (2017) Quality compliance and environmental impact assessment of commercial empty fruit bunch (EFB) pellet fuel in Malaysia. J Oil Palm Res 29(4):570–578. https://doi.org/10.21894/jopr.2017.0002

    Article  CAS  Google Scholar 

  4. Sukiran MA, Daud WMAW, Abnisa F, Nasrin AB, Aziz AA, Loh SK (2021) A comprehensive study on torrefaction of empty fruit bunches: characterization of solid, liquid and gas products. Energy 230:120877. https://doi.org/10.1016/j.energy.2021.120877

    Article  CAS  Google Scholar 

  5. Sukiran MA, Daud WMAW, Abnisa F, Nasrin AB, Astimar AA, Loh SK (2020) Individual torrefaction parameter enhances characteristics of torrefied empty fruit bunches. Biomass Convers Biorefin 11:461–472. https://doi.org/10.1007/s13399-020-00804-z

  6. Younis M, Alnouri SY, Tarboush BJA, Ahmad MN (2018) Renewable biofuel production from biomass: a review for biomass pelletization, characterization, and thermal conversion techniques. Int J Green Energy 15(13):837–863. https://doi.org/10.1080/15435075.2018.1529581

    Article  CAS  Google Scholar 

  7. Tumuluru JS, Wright CT, Hess JR, Kenney KL (2011) A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioprod Bioref 5(6):683–707. https://doi.org/10.1002/bbb.324

    Article  CAS  Google Scholar 

  8. Brunerová A, Müller M, Šleger V, Ambarita H, Valášek P (2018) Bio-pellet fuel from oil palm empty fruit bunches (EFB): Using European standards for quality testing. Sustainability 10(12):4443. https://doi.org/10.3390/su10124443

    Article  Google Scholar 

  9. Lisowski A, Matkowski P, Dąbrowska M, Piątek M, Świętochowski A, Klonowski J, Mieszkalski L, Reshetiuk V (2020) Particle size distribution and physicochemical properties of pellets made of straw, hay, and their blends. Waste Biomass Valor 11:63–75. https://doi.org/10.1007/s12649-018-0458-8

  10. Tenorio C, Moya R, Valaert J (2016) Characterisation of pellets made from oil palm residues in Costa Rica. J Oil Palm Res 28:198–210. https://doi.org/10.21894/jopr.2016.2802.08

    Article  CAS  Google Scholar 

  11. Rueda-Ordóñez YJ, Arias-Hernández CJ, Manrique-Pinto JF, Gauthier-Maradei P, Bizzo WA (2019) Assessment of the thermal decomposition kinetics of empty fruit bunch, kernel shell and their blend. Bioresour Technol 292:121923. https://doi.org/10.1016/j.biortech.2019.121923

    Article  CAS  PubMed  Google Scholar 

  12. da Costa JS, da Silva MG, Scatolino MV, Lima MDR, de Assis MR, Bufalino L, Numazawa S, Trugilho PF, de Paula Protásio T (2020) Relating features and combustion behavior of biomasses from the Amazonian agroforestry chain. Biomass Convers Bior. https://doi.org/10.1007/s13399-020-01121-1

  13. Nyakuma BB, Wong SL, Faizal HM, Hambali HU, Oladokun O, Abdullah TAT (2020) Carbon dioxide torrefaction of oil palm empty fruit bunches pellets: characterisation and optimisation by response surface methodology. Biomass Convers Bior. https://doi.org/10.1007/s13399-020-01071-8

  14. Lam PY, Lim CJ, Sokhansanj S, Lam PS, Stephen JD, Pribowo A, Mabee WE (2014) Leaching characteristics of inorganic constituents from oil palm residues by water. Ind Eng Chem Res 53(29):11822–11827. https://doi.org/10.1021/ie500769s

    Article  CAS  Google Scholar 

  15. Babinszki B, Jakab E, Terjék V, Sebestyén Z, Várhegyi G, May Z, Mahakhant A, Attanatho L, Suemanotham A, Thanmongkhon Y (2021) Thermal decomposition of biomass wastes derived from palm oil production. J Anal Appl Pyrolysis 155:105069. https://doi.org/10.1016/j.jaap.2021.105069

    Article  CAS  Google Scholar 

  16. Lachowicz H, Sajdak M, Paschalis-Jakubowicz P, Cichy W, Wojtan R, Witczak M (2018) The influence of location, tree age and forest habitat type on basic fuel properties of the wood of the silver birch (Betula pendula Roth.) in Poland. Bioenergy Res 11(3):638–651. https://doi.org/10.1007/s12155-018-9926-z

    Article  CAS  Google Scholar 

  17. Bandara JC, Jaiswal R, Nielsen HK, Moldestad BM, Eikeland MS (2021) Air gasification of wood chips, wood pellets and grass pellets in a bubbling fluidized bed reactor. Energy J 233:121149. https://doi.org/10.1016/j.energy.2021.121149

    Article  CAS  Google Scholar 

  18. Chandrasekaran SR, Hopke PK, Rector L, Allen G, Lin L (2012) Chemical composition of wood chips and wood pellets. Energ Fuel 26(8):4932–4937. https://doi.org/10.1021/ef300884k

    Article  CAS  Google Scholar 

  19. Eo JW, Kim MJ, Jeong IS, Cho L, Kim SJ, Park S, Kim DH (2021) Enhancing thermal efficiency of wood pellet boilers by improving inlet air characteristics. Energy 228:120475. https://doi.org/10.1016/j.energy.2021.120475

    Article  Google Scholar 

  20. Porsö C, Hammar T, Nilsson D, Hansson P-A (2018) Time-dependent climate impact and energy efficiency of internationally traded non-torrefied and torrefied wood pellets from logging residues. Bioenerg Res 11(1):139–151. https://doi.org/10.1007/s12155-017-9884-x

    Article  CAS  Google Scholar 

  21. Lam PS, Lam PY, Sokhansanj S, Lim CJ, Bi XT, Stephen JD, Pribowo A, Mabee WE (2015) Steam explosion of oil palm residues for the production of durable pellets. Appl Energy 141:160–166. https://doi.org/10.1016/j.apenergy.2014.12.029

    Article  CAS  Google Scholar 

  22. Nurdiawati A, Novianti S, Zaini IN, Nakhshinieva B, Sumida H, Takahashi F, Yoshikawa K (2015) Evaluation of hydrothermal treatment of empty fruit bunch for solid fuel and liquid organic fertilizer co-production. Energy Procedia 79:226–232. https://doi.org/10.1016/j.egypro.2015.11.469

    Article  CAS  Google Scholar 

  23. Novianti S, Zaini IN, Nurdiawati A, Yoshikawa K (2016) Low potassium content pellet production by hydrothermal-washing co-treatment. Int J Chem Chem Eng Syst 1:28–38

    CAS  Google Scholar 

  24. ASTM D5142 (1998) Standard test methods for proximate analysis of the analysis sample of coal and coke by instrumental procedures. ASTM International, West Conshohocken

    Google Scholar 

  25. ASTM D5865 (2019) Standard test method for gross calorific value of coal and coke. ASTM International, West Conshohocken

    Google Scholar 

  26. Thompson SO, Rough SL (2021) The densification of cocoa bean shells for bioenergy purposes. Biomass Bioenerg 148:106057. https://doi.org/10.1016/j.biombioe.2021.106057

    Article  CAS  Google Scholar 

  27. ASTM D5373 (2014) Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke. ASTM International, West Conshohocken

    Google Scholar 

  28. EN 14127 (2011) Non-destructive testing - ultrasonic thickness measurement. CEN, Brussels

    Google Scholar 

  29. ASTM D792 (2008) Standard test methods for density and specific gravity (relative density) of plastics by displacement. ASTM International, West Conshohocken

    Google Scholar 

  30. Theerarattananoon K, Xu F, Wilson J, Ballard R, Mckinney L, Staggenborg S, Vadlani P, Pei Z, Wang D (2011) Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Ind Crops Prod 33(2):325–332. https://doi.org/10.1016/j.indcrop.2010.11.014

    Article  CAS  Google Scholar 

  31. ASTM D6349 (2013) Standard test method for determination of major and minor elements in coal, coke, and solid residues from combustion of coal and coke by inductively coupled plasma - atomic emission spectrometry. ASTM International, West Conshohocken

    Google Scholar 

  32. APHA (2005) Standard methods for the examination of water and wastewater 21. American Public Health Association American Water Works Association and Water Environment Federation, Washington, D.C.

    Google Scholar 

  33. ISO 17831-1 (2015) Solid biofuels - determination of mechanical durability of pellets and briquettes - Part 1: Pellets. ISO, Geneva

    Google Scholar 

  34. Loh SK, Nasrin AB, Azri SM, Adela BN, Muzzammil N, Jay TD, Eleanor RAS, Lim WS, Choo YM, Kaltschmitt M (2017) First report on Malaysia’s experiences and development in biogas capture and utilization from palm oil mill effluent under the economic transformation programme: current and future perspectives. Renew Sustain Energy Rev 74:1257–1274. https://doi.org/10.1016/j.rser.2017.02.066

    Article  CAS  Google Scholar 

  35. Ahmed Y, Yaakob Z, Akhtar P, Sopian K (2015) Production of biogas and performance evaluation of existing treatment processes in palm oil mill effluent (POME). Renew Sustain Energy Rev 42:1260–1278. https://doi.org/10.1016/j.rser.2014.10.073

    Article  CAS  Google Scholar 

  36. Shrivastava P, Khongphakdi P, Palamanit A, Kumar A, Tekasakul P (2020) Investigation of physicochemical properties of oil palm biomass for evaluating potential of biofuels production via pyrolysis processes. Biomass Convers Bior. https://doi.org/10.1007/s13399-019-00596-x

  37. Tang Y, Chandra RP, Sokhansanj S, Saddler JN (2018) The role of biomass composition and steam treatment on durability of pellets. Bioenergy Res 11(2):341–350. https://doi.org/10.1007/s12155-018-9900-9

    Article  CAS  Google Scholar 

  38. Lee J, Sokhansanj S, Lau A, Lim C (2020) Physical properties of wood pellets exposed to liquid water. Biomass Bioenerg 142:105748. https://doi.org/10.1016/j.biombioe.2020.105748

    Article  CAS  Google Scholar 

  39. Ungureanu N, Vladut V, Voicu G, Dinca MN, Zabava BS (2018) Influence of biomass moisture content on pellet properties – review. Eng Rural Dev 17:1876–1883. https://doi.org/10.22616/ERDev2018.17.N449

    Article  Google Scholar 

  40. Ahda Y, Prakoso T, Rasrendra C, Susanto H (2019) Hydrothermal treatment, pelletization and characterization of oil palm empty fruit bunches as solid fuel. IOP Conf Ser Mater Sci Eng 543:012061. https://doi.org/10.1088/1757-899X/543/1/012061

    Article  CAS  Google Scholar 

  41. Lieskovský M, Jankovský M, Trenčiansky M, Merganič J (2017) Ash content vs. the economics of using wood chips for energy: model based on data from Central Europe. Bioresources 12(1):1579–1592. https://doi.org/10.15376/biores.12.1.1579-1592

    Article  CAS  Google Scholar 

  42. Ozgen S, Cernuschi S, Caserini S (2021) An overview of nitrogen oxides emissions from biomass combustion for domestic heat production. Renew Sustain Energy Rev 135:110113. https://doi.org/10.1016/j.rser.2020.110113

    Article  CAS  Google Scholar 

  43. Verma V, Bram S, Gauthier G, De Ruyck J (2011) Evaluation of the performance of a multi-fuel domestic boiler with respect to the existing European standard and quality labels: Part-1. Biomass Bioenerg 35(1):80–89. https://doi.org/10.1016/j.biombioe.2010.08.028

    Article  CAS  Google Scholar 

  44. Demirbas A (2007) Effects of moisture and hydrogen content on the heating value of fuels. Energ Source Part A 29(7):649–655. https://doi.org/10.1080/009083190957801

    Article  CAS  Google Scholar 

  45. Zhang Y (2019) Trace elements characteristics of ultra-low emission coal-fired power plants. In: Zhang Y, Wang T, Pan WP, Romero CE (eds) Advances in ultra-low emission control technologies for coal-fired power plants. Elsevier, United Kingdom, pp 199–239. https://doi.org/10.1016/B978-0-08-102418-8.00006-1

    Chapter  Google Scholar 

  46. Pintana P, Tippayawong N (2013) Nonisothermal thermogravimetric analysis of Thai lignite with high CaO content. Scientific World Journal 2013:1–7. https://doi.org/10.1155/2013/216975

    Article  CAS  Google Scholar 

  47. Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365–385. https://doi.org/10.1016/j.envint.2019.01.067

    Article  CAS  PubMed  Google Scholar 

  48. Kong SH, Loh SK, Bachmann RT, Zainal H, Cheong KY (2019) Palm kernel shell biochar production, characteristics and carbon sequestration potential. J Oil Palm Res 31(3):508–520. https://doi.org/10.21894/jopr.2019.0041

    Article  CAS  Google Scholar 

  49. Shao Y, Wang J, Preto F, Zhu J, Xu C (2012) Ash deposition in biomass combustion or co-firing for power/heat generation. Energies 5(12):5171–5189. https://doi.org/10.3390/en5125171

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Director-General of the Malaysian Palm Oil Board (MPOB) for permission to publish this paper. Technical assistance from the staff of the Energy and Environment Unit of the Engineering and Processing Research Division, MPOB and industry collaborator, Global Green Synergy Sdn. Bhd. (GGS), were also deeply appreciated.

Funding

This work was supported by MPOB and GGS under the collaborative project entitled “Development of a process system for the formulation and production of palm-based biomass pellets”.

Author information

Authors and Affiliations

Authors

Contributions

The following research activities were performed by specific authors: conceptualization and methodology, A.B.Nasrin, J Lim, S Lim, E Chin; formal analysis and investigation, A.B.Nasrin, J Lim, S Lim, E Chin; writing — original draft preparation, A.B. Nasrin; writing — review and editing, S.K. Loh, M.A. Sukiran, N.A. Bukhari, A.A. Aziz.

Corresponding author

Correspondence to Abu Bakar Nasrin.

Ethics declarations

Ethics approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrin, A.B., Loh, S.K., Sukiran, M.A. et al. Production and Characterization of Low-Ash Empty Fruit Bunches Pellets as a Solid Biofuel. Bioenerg. Res. 15, 517–529 (2022). https://doi.org/10.1007/s12155-021-10316-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10316-x

Keywords

Navigation