Skip to main content
Log in

Agile and stable running locomotion control for an untethered and one-legged hopping robot

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper is aimed at presenting a locomotion control framework to realize agile and robust locomotion behaviors on conventional stiff-by-nature legged robots. First, a trajectory generator that is capable of characterizing angular momentum is utilized to synthesize reference CoM trajectories and associated force inputs, in accordance with the target locomotion profile. Second, the controller evaluates both force and position errors in the joint level, using a servo controller and an admittance control block. The trade-off between the position and force errors is naturally adjusted via admittance control coefficients. Implementing the controller on a 4-link, 3-jointed one-legged robot, we conducted several balancing and running experiments under challenging conditions; e.g., balancing on a moving cart, balancing on a surface with varying orientation, running on a flat surface, running on an inclined surface. The experimental study results indicated that the locomotion controller enabled the robot to perform untethered one-legged running and to maintain its balance when subject to disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmadi, M.,& Buehler, M. (2006). Controlled passive dynamic running experiments with the ARL-monopod II. IEEE Transactions on Robotics, 22(5), 974–986.

    Article  Google Scholar 

  • Balafoutis, C. A.,& Patel, R. V. (1991). Efficient computation of manipulator inertia matrices and the direct dynamics problem. IEEE Transactions on Systems, Man, and Cybernetics, 19, 1313–1320.

    Article  Google Scholar 

  • Batts, Z., Kim, J.,& Yamane, K. (2016). Untethered one-legged hopping in 3d using linear elastic actuator in parallel (leap). In: Proc. intl. symposium on experimental robotics, Tokyo, Japan (pp. 103–112).

  • Bellicoso, C. D., Jenelten, C., Gehring, F.,& Hutter, M. (2018). Dynamic locomotion through online nonlinear motion optimization for quadrupedal robots. IEEE Robotics and Automation Letters, 3(3), 335–346.

    Article  Google Scholar 

  • Bloesch, M., Hutter, M., Hoepflinger, M., Leutenegger, S., Gehring, C., Remy, C.D.,& Siegwart, R. (2012). State estimation for legged robots—Consistent fusion of leg kinematics and. In Robotics: science and systems VIII, robotics: science and systems foundation.

  • Boaventura, T., Semini, C., Buchli, J., Frigero, M., Focchi, M.,& Caldwell, D. G. (2012). Dynamic torque control of a hydraulic quadruped robot. In Proc. IEEE intl. conf. on robotics and automation (ICRA), St. Paul (pp. 1889–1894).

  • Bowling, A. (2011). Impact forces and agility in legged robot locomotion. Journal of Vibration and Control, 17(3), 674–685.

    Article  MathSciNet  Google Scholar 

  • Buchli, J., Kalakrishnan, M., Mistry, M., Pastor, P.,& Schaal, S. (2009). Compliant quadruped locomotion over rough terrain. In Proc. IEEE intl. conf. on intelligent robots and systems (IROS), St. Louis (pp. 814–820).

  • Buschmann, T., Lohmeier, S.,& Ulbrich, H. (2009). Biped walking control based on hybrid position/force control. In Proc. IEEE intl. conf. on intelligent robots and systems (IROS), St. Louis (pp. 3019–3024).

  • Caron, S., Kheddar, A.,& Tempier, O. (2019). Stair climbing stabilization of the HRP-4 humanoid robot using whole-body admittance control. In 2019 International conference on robotics and automation (ICRA). IEEE.

  • Cavagna, G. A., Franzetti, P., Heglung, N. C.,& Willems, P. (1988). The determinants of the step frequency in running, trotting and hopping in man other vertebrates. Journal of Physiology, 399(1), 81–92.

    Article  Google Scholar 

  • Cavanagh, P. R. (1987). The biomechanics of lower extremity action in distance running. Foot& Ankle, 7(4), 197–217.

    Article  Google Scholar 

  • Cho, B.-K., Kim, J.-H.,& Oh, J.-H. (2011). Online balance controllers for running in the humanoid robot, hubo2. Advanced Robotics, 25(10), 1209–1225.

    Article  Google Scholar 

  • Diedrich, F. J.,& Warren, W. H, Jr. (1995). Why change gaits? Dynamics of the walk-run transition. Journal of Experimental Psychology, 21(1), 183–202.

    Google Scholar 

  • Ferris, D. P., Louie, M.,& Farley, C. T. (1998). Running in the real world: Adjusting leg stiffness for different surfaces. Proceedings of the Royal Society of London, 265, 989–993.

    Article  Google Scholar 

  • Flayols, T., Prete, A. Del., Wensing, P., Mifsud, A., Benallegue, M.,& Stasse, O. (2017). Experimental evaluation of simple estimators for humanoid robots. In 2017 IEEE-RAS 17th international conference on humanoid robotics (Humanoids). IEEE.

  • Fujimoto, Y.,& Kawamura, A. (1998). Robust biped walking with active interaction control between foot and ground. In Proc. IEEE intl. conf. on robotics and automation (ICRA), Leuven, Belgium (pp. 2030–2035).

  • Geyer, H., Seyfarth, A.,& Blickhan, R. (2006). Compliant leg behaviour explains basic dynamics of walking and running. Proceedings of the Royal Society B, 273(1603), 2861–2867.

    Article  Google Scholar 

  • Gollhofer, D., Schmidtbleicher, A.,& Dietz, V. (1984). Regulation of muscle stiffness in human locomotion. International Journal of Sports Medicine, 15(1), 19–22.

    Article  Google Scholar 

  • Harada, K., Kajita, S., Kaneko, K.,& Hirukawa, H. (2004). An analytical method on real-time gait planning for a humanoid robot. International Conference on Humanoid Robots, 3(1), 1–19.

    Google Scholar 

  • Hartley, R., Ghaffari, M., Eustice, R. M.,& Grizzle, J. W. (2020). Contact-aided invariant extended Kalman filtering for robot state estimation. The International Journal of Robotics Research, 39(4), 402–430.

    Article  Google Scholar 

  • Hurst, J. W.,& Rizzi, A. A. (2008). Series compliance for an efficient running gait. IEEE Robotics& Automation Magazine, 15(3), 42–51.

    Article  Google Scholar 

  • Hyon, S.-H.,& Cheng, G., 2007 Disturbance rejection for biped humanoids. In Proc. IEEE intl. conf. on robotics and automation (ICRA), Rome (pp. 2668–2675).

  • Jordan, K.,& Newell, K. M. (2008). The structure of variability in human walking and running is speed-dependent. Exercise and Sport Sciences Review, 36(4), 200–204.

    Article  Google Scholar 

  • Kagami, S., Kitagawa, T., Nishiwaki, K., Sugihara, T., Inaba, M.,& Inoue, H. (2002). A fast dynamically equilibrated walking trajectory generation method of humanoid robot. Autonomous Robots, 12(1), 71–82.

    Article  Google Scholar 

  • Kajita, S., Kaneko, K., Morisawa, M., Nakaoka, S.,& Hirukawa, H., 2007 Zmp-based biped running enhanced by toe springs. In Proc. IEEE intl. conf. on robotics and automation (ICRA), Rome (pp. 3963–3969).

  • Kajita, S., Morisawa, M., Miura, K., Nakaoka, S., Harada, K., Kaneko, K., Kanehiro, F.,& Yokoi, K., (2010). Biped walking stabilization based on linear inverted pendulum tracking. In 2010 IEEE/RSJ international conference on intelligent robots and systems. IEEE.

  • Kajita, S., Nagasaki, T., Kaneko, K.,& Hirukawa, H. (2007). Zmp-based biped running control. IEEE Robotics& Automation Magazine, 14(2), 63–72.

    Article  Google Scholar 

  • Kamioka, T., Kaneko, H., Kuroda, M., Tanaka,C., Shirokura, S., Takeda, M.,& Yoshiike, T., (2017). Dynamic gait transition between walking, running and hopping for push recovery. In IEEE/RAS intl conf. on humanoid robots (pp. 1–8).

  • Kamioka, T., Kaneko, H., Kuroda, M., Tanaka, C., Shirokura, S., Takeda, M.,& Yoshiike, T. (2017). Dynamic gait transition between walking, running and hopping for push recovery. In 2017 IEEE-RAS 17th international conference on humanoid robotics (humanoids). IEEE.

  • Kim, Y.-D., Lee, B.-J., Ryu, J.-H.,& Kim, J.-H. (2007). Landing force control for humanoid robot by time-domain passivity approach. IEEE Transactions on Robotics, 23(6), 1294–1301.

    Article  Google Scholar 

  • Kormushev, P., Ugurlu, B.,Colasanto, L., Tsagarakis, N. G.,& Caldwell, D. G. (2012) The anatomy of a fall: automated real-time analysis of raw force sensor data from bipedal walking robots and humans. In IEEE/RSJ intl conf. on intelligent robots and systems (pp. 3706–3713).

  • Kung, S. M., Fink, P. W., Legg, S. J., Ali, A.,& Shultz, S. P. (2018). What factors determine the preferred gait transition speed in humans? a review of the triggering mechanisms. Human Movement Science, 57(1), 1–12.

    Article  Google Scholar 

  • Lebosse, C., Renaud, P., Bayle, B.,& de Mathelin, M. (2011). Modeling and evaluation of low-cost force sensors. IEEE Transactions on Robotics, 27(4), 815–822.

    Article  Google Scholar 

  • Mistry, M., Buchli, J.,& Schaal, S. (2010). Inverse dynamics control of floating base systems using orthogonal decomposition. In Proc. IEEE intl. conf. on robotics and automation (ICRA), Anchorage, (pp. 3406–3412).

  • Napoleon, N., Izu, H., Nakaura, S.,& Sampei, M. (2005). An analysis of zmp control problem of humanoid robot with compliances in sole of the foot. In The 16th IFAC world congress (pp. 337–342).

  • Nelson, G., Saunders, N., Neville, A., Swilling, B., Bondaryk, J., Billings, D., et al. (2012). A humanoid robot for testing chemical protective clothing. Journal of the Robotics Society of Japan, 30(4), 372–377.

    Article  Google Scholar 

  • Neunert, M., de Crousaz, C., Furrer, F., Kamel, M., Farshidian, F., Siegwart, R.,& Buchli, J. (2016). Fast nonlinear model predictive control for unified trajectory optimization and tracking. In Proc. IEEE intl. conf. on robotics and automation (ICRA), Stockholm (pp. 1398–1404).

  • Olson, E. (2010). A passive solution to the sensor synchronization problem. In 2010 IEEE/RSJ international conference on intelligent robots and systems. IEEE.

  • Orin, D. E., Goswami, A.,& Lee, S.-H. (2013). Centroidal dynamics of a humanoid robot. Autonomous Robots, 35(2), 161–176.

    Article  Google Scholar 

  • Orsolino, R., Focchi, M., Caron, S., Raiola, G., Barasuol, V., Caldwell, D. G., et al. (2020). Feasible region: An actuation-aware extension of the support region. IEEE Transactions on Robotics, 36(4), 1239–1255.

    Article  Google Scholar 

  • Ott, C., Roa, M. A.,& Hirzinger, G. (2011). Posture and balance control for biped robots based on contact force optimization. In Proc. IEEE intl. conf. on humanoid robotics, Bled (pp. 26–32).

  • Pratt, J., Carff, J., Drakunov, S.,& Goswami, A. (2006). Capture point: A step toward humanoid push recovery. In Proc. IEEE intl conf. on humanoid robots (humanoids), Genova.

  • Raibert, M. H., Brown, H. B.,& Chepponis, M. (1984). Experiments in balance with a 3D one-legged hopping machine. The International Journal of Robotics Research, 3(2), 75–92.

    Article  Google Scholar 

  • Sakka, S.,& Yokoi, K. (2005). Humanoid vertical jumping based on force feedback and inertial forces optimization. In Proc. IEEE intl. conf. on robotics and automation (ICRA), Barcelona (pp. 3752–3757).

  • Sanyal, A.,& Goswami, A. (2013). Dynamics and balance control of the reaction mass pendulum (RMP): A 3D multibody pendulum with variable body inertia. ASME Journal of Dynamics Systems, Measurement and Control, 136(2), 1–10.

    Google Scholar 

  • Tajima, R., Honda, D.,& Suga, K. (2009). Zmp-based biped running enhanced by toe springs. In Proc. IEEE intl. conf. on robotics and automation (ICRA), Kobe (pp. 1571–1576).

  • Takenaka, T., Matsumoto, T.,& Yoshiike, T. (2009). Real time motion generation and control for biped robot-3rd report: Dynamics error compensation. In Proc. IEEE intl. conf. on intelligent robots and systems (IROS), St. Louis (pp. 1594–1600).

  • Tsagarakis, N. G., Caldwell, D. G., Negrello, F., Choi, W., Baccelliere, L., Loc, V. G., et al. (2017). Walk-man: A high-performance humanoid platform for realistic environments. Journal of Field Robotics, 34(7), 1225–1259.

    Article  Google Scholar 

  • Ugurlu, B.,& Kawamura, A. (2012). Bipedal trajectory generation based on combining inertial forces and intrinsic angular momentum rate changes: Eulerian zmp resolution. IEEE Transactions on Robotics, 28(6), 1406–1415.

    Article  Google Scholar 

  • Ugurlu, B., Doppmann, C., Hamaya, M., Forni, P., Teramae, T., Noda, T., et al. (2016). Variable ankle stiffness improves balance control: Experiments on a bipedal exoskeleton. I IEEE/ASME Transactions on Mechatronics, 21(1), 79–87.

    Google Scholar 

  • Ugurlu, B., Kawasaki, T., Kawanishi, M.,& Narikiyo, T. (2012). Continuous and dynamically equilibrated one-legged running experiments: Motion generation and indirect force feedback control. In Proc. IEEE intl. conf. on intelligent robots and systems (IROS), Algarve (pp. 1846–1852).

  • Ugurlu, B., Nishimura, M., Hyodo, K., Kawanishi, M.,& Narikiyo, T. (2015). Proof of concept for robot-aided upper limb rehabilitation using disturbance observers. IEEE Transactions on Human-Machine Systems, 45(1), 110–118.

    Article  Google Scholar 

  • Ugurlu, B., Saglia, J. A., Tsagarakis, N. G., Morfey, S.,& Caldwell, D. G. (2014). Bipedal hopping pattern generation for passively compliant humanoids: Exploiting the resonance. IEEE Transactions on Industrial Electronics, 61(10), 5431–5443.

    Article  Google Scholar 

  • Vukobratovic, M.,& Borovac, B. (2004). Zero moment point—thirty five years of its life. International Journal of Humanoid Robotics, 1(1), 157–173.

    Article  Google Scholar 

  • Wensing, P. M.,& Orin, D. (2015). Improved computation of the humanoid centroidal dynamics and application in dynamic whole-body control. International Journal of Humanoid Robotics, 13(1), 1–23.

    Google Scholar 

  • Wensing, P. M., Wang, A., Seok, S., Otten, D., Lang, J.,& Kim, S. (2017). Proprioceptive actuator design in the mit cheetah: Impact mitigation and high-bandwidth physical interaction for dynamic legged robots. IEEE Transactions on Robotics, 33(3), 509–522.

    Article  Google Scholar 

  • Wensing, P. M.,& Orin, D. E. (2013). High-speed humanoid running through control with a 3D-SLIP model. In 2013 IEEE/RSJ international conference on intelligent robots and systems. IEEE.

  • Zhu, H., Sharma, M., Pfeiffer, K., Mezzavilla, M., Shen, J., Rangan, S.,& Righetti, L. (2020). Enabling remote whole-body control with 5g edge computing. In 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barkan Ugurlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 104071 KB)

Appendix: Derivation of the Lyapunov function

Appendix: Derivation of the Lyapunov function

As previously explained, the admittance controller was expressed as \(T_{ref}-T = k q_c + b \dot{q_c}\). This expression can be rearranged as follows:

$$\begin{aligned} \dot{q}_c= & {} \mu (T_{ref} - T) - \nu q_c \end{aligned}$$
(31)
$$\begin{aligned} K_v \dot{q}_c + K_p q_c= & {} \xi T_{ref} - \xi T - (k \xi - K_p)q_c \end{aligned}$$
(32)

In (31), \(\mu \) and \(\nu \) are diagonal matrices that are defined as \(\mu _{[i,i]} = \frac{1}{b_i}\) and \(\nu _{[i,i]} = \frac{k_i}{b_i}\). Using the torque command signal given in (23), the dynamics of the system may be reduced to the following form:

$$\begin{aligned} M(q)\ddot{\tilde{q}}= & {} -C(q,\dot{q})\dot{\tilde{q}} - K_v \dot{\tilde{q}} - K_p \tilde{q} - K_v \dot{q}_c - K_p q_c \nonumber \\&+\, \xi T_{ref} + T, \end{aligned}$$
(33)

where \(\tilde{q} = q-q_{ref}\). Combining (32) with (33) yields the following:

$$\begin{aligned} M(q)\ddot{\tilde{q}} = -C(q,\dot{q})\dot{\tilde{q}} - K_v \dot{\tilde{q}} - K_p \tilde{q} + \beta T - \gamma q_c. \end{aligned}$$
(34)

In (34), \(\beta = I+\xi \) and \(\gamma = K_p - k \xi \). Recall that \(T= -D_e \dot{q} - K_e (q_e - q) \), due to environmental interaction. If we utilize this information, (34) can take the final form stated below.

$$\begin{aligned} M(q)\ddot{\tilde{q}}= & {} -C(q,\dot{q})\dot{\tilde{q}} - K_v \dot{\tilde{q}} - K_p \tilde{q} - \beta D_e \dot{q} \nonumber \\- & {} \beta K_e (q_e-q) - \gamma q_c. \end{aligned}$$
(35)

First, we use the following Lyapunov function candidate:

$$\begin{aligned} V_1 = \frac{1}{2} \dot{\tilde{q}}^\intercal M(q)\dot{\tilde{q}} + \frac{1}{2} \tilde{q}^\intercal K_p\tilde{q} \end{aligned}$$
(36)

The time derivative of (36) can be expressed as below:

$$\begin{aligned} \dot{V}_1= & {} - \dot{\tilde{q}}^\intercal K_v\dot{\tilde{q}} - \dot{\tilde{q}}^\intercal \beta D_e\dot{q} - \dot{\tilde{q}}^\intercal \beta K_e (q - q_e) - \dot{\tilde{q}}^\intercal \gamma q_c\nonumber \\ \end{aligned}$$
(37)
$$\begin{aligned}= & {} - \dot{\tilde{q}}^\intercal K_v\dot{\tilde{q}} - \dot{q}^\intercal \beta D_e\dot{q} - \dot{q}^\intercal \beta K_e (q - q_e) - \dot{\tilde{q}}^\intercal \gamma q_c \nonumber \\&+\, \dot{q}_{ref}^\intercal \beta D_e \dot{q} + \dot{q}_{ref}^\intercal \beta K_e (q - q_e) \end{aligned}$$
(38)
$$\begin{aligned}= & {} - \dot{\tilde{q}}^\intercal K_v\dot{\tilde{q}} - \dot{q}^\intercal \beta D_e\dot{q} - \dot{q}^\intercal \beta K_e q + \dot{q}^\intercal \beta K_e q_e \nonumber \\&-\, \dot{\tilde{q}}^\intercal \gamma q_c + \dot{q}_{ref}^\intercal \beta T. \end{aligned}$$
(39)

As the next step, we introduce the following Lyapunov function:

$$\begin{aligned} V_2 = V_1 + \frac{1}{2} q^\intercal \beta K_e q. \end{aligned}$$
(40)

We can differentiate (40) as below.

$$\begin{aligned} \dot{V}_2= & {} \dot{q}_{ref}^\intercal \beta T \!-\! \dot{\tilde{q}}^\intercal K_v\dot{\tilde{q}} \!-\! \dot{q}^\intercal \beta D_e\dot{q} \!+\! \dot{q}^\intercal \beta K_e q_e \!-\! \dot{\tilde{q}}^\intercal \gamma q_c\nonumber \\ \end{aligned}$$
(41)

Finally, we introduce the Lyapunov function given in (24), which can be expressed in terms of \(V_2\).

$$\begin{aligned} V = V_2 + \frac{1}{2} \hat{q}^\intercal P \hat{q} \end{aligned}$$
(42)

As stated previously, \(\hat{q} = [q\ q_e]^\intercal \) and P was given in (25), which included a skew-symmetric matrix A and a positive semi-definite matrix C, i.e., \(C \ge 0\). Its time derivative is computed as follows.

$$\begin{aligned} \dot{V} = \dot{V}_2 + \frac{d}{dt} \left( \frac{1}{2} \hat{q}^\intercal P \hat{q}\right) \end{aligned}$$
(43)

Before computing the derivation of (27) based on (43), we begin by proving the positive definiteness of \(\frac{1}{2} \hat{q}^\intercal P \hat{q}\).

$$\begin{aligned} \frac{1}{2} \hat{q}^\intercal P \hat{q}= & {} \frac{1}{2} \left[ \begin{array}{c} q \\ q_e \end{array} \right] ^\intercal \left[ \begin{array}{c c} 2A &{} -\beta K_e \\ -K_e^\intercal \beta ^\intercal &{} 2C \end{array} \right] \left[ \begin{array}{c} q \\ q_e \end{array} \right] \end{aligned}$$
(44)
$$\begin{aligned}= & {} q_e^\intercal C q_e - q^\intercal \beta K_e q_e \end{aligned}$$
(45)

C is a free design parameter such that the inequality \(q_e^\intercal C q_e \ge q^\intercal \beta K_e q_e\) holds true. Therefore, the Lyapunov function V given in (24) is positive definite.

As the next step, we derive (27) by showing that \(\frac{d}{dt}\left( \frac{1}{2} \hat{q}^\intercal P \hat{q}\right) = - \dot{q}^\intercal \beta K_e q_e \). To do so, the first time derivative of (45) is yielded.

$$\begin{aligned} \frac{d}{dt}\left( \frac{1}{2} \hat{q}^\intercal P \hat{q}\right) \!=\! \dot{q}_e^\intercal C q_e \!+\! q_e^\intercal C \dot{q}_e \!-\! \dot{q}^\intercal \beta K_e q_e \!-\! q^\intercal \beta K_e \dot{q}_e\nonumber \\ \end{aligned}$$
(46)

Since the environment is stationary, i.e., \(\dot{q}_e=0\), \(\frac{d}{dt}\left( \frac{1}{2} \hat{q}^\intercal P \hat{q}\right) = - \dot{q}^\intercal \beta K_e q_e \) holds true. Therefore, Lyapunov function V and its time derivative are obtained as stated in (24) and (26). When the controller gains are assigned as \(\frac{K_{vi}}{b_i} = \frac{K_{pi}}{k_i}\) for each joint, (26) is reduced to (27).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugurlu, B., Sariyildiz, E., Kawasaki, T. et al. Agile and stable running locomotion control for an untethered and one-legged hopping robot. Auton Robot 45, 805–819 (2021). https://doi.org/10.1007/s10514-021-10010-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-021-10010-z

Keywords

Navigation