Skip to main content
Log in

Salts and Complexes Containing the Decachloro-closo-Decaborate Anion

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

This work describes the currently known cationic-anionic and complex metal compounds containing the decachloro-closo-decaborate anion [B10Cl10]2–. The influence of the nature of the cation, solvent, metal and/or organic ligands on the composition and structure of the reaction products is discussed. Salts and complexes containing alkali metal cations, organic cations, and cationic complexes of metals Ag(I), Cu(II), Fe(II), Co(II), Ni(II), and Mn(II) with the decachloro-closo-decaborate anion as a counterion are described. The first examples of silver(I) complexes with the coordinated [B10Cl10]2– anion are described. The ability of the perchlorinated closo-decaborate anion to participate in additional non-bonded interactions B–Cl…X (X = C, N, O) with alkali metal cations, organic cations, organic ligands, and solvent molecules is discussed; these interactions can be identified by 35Cl NQR spectroscopy and X-ray diffraction. A number of new compounds based on perchlorinated boron clusters [B10Hal9R] containing nine halogen atoms and a functional group R are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.

Similar content being viewed by others

REFERENCES

  1. Muetterties, E.L. and Knoth, W.H., Polyhedral Boranes, New York: Dekker, 1968.

    Google Scholar 

  2. Greenwood, N.N. and Earnshaw, A., Chemistry of the Elements, Butterworth-Heinemann, 1997.

    Google Scholar 

  3. Boron Science: New Technologies and Applications, Hosmane N.S., Ed., CRC Press, 2012.

    Google Scholar 

  4. Bruce King, R., Chem. Rev., 2001, vol. 101, no. 5, p. 1119 https://doi.org/10.1021/cr000442t

    Article  CAS  Google Scholar 

  5. Chen, Z. and King, R.B., Chem. Rev., 2005, vol. 105, p. 3613. https://doi.org/10.1021/cr0300892

    Article  CAS  PubMed  Google Scholar 

  6. Kuznetsov, N.T., Ionov, S.P., and Solntsev, K.A., Razvitie kontseptsii aromatichnosti: poliedricheskie struktury (Development of the Aromaticity Concept: Polyhedral Structures), Moscow: Nauka, 2009.

  7. Sivaev, I.B., Chem. Heterocycl. Comp., 2017, vol. 53, p. 638. https://doi.org/10.1007/s10593-017-2106-9

    Article  CAS  Google Scholar 

  8. Knoth, W.H., Polyamides and Polyesters of Polyhedral Boron Compounds, US Patent 3354121.

  9. Skachkova, V.K., Grachev, A.V., Goeva, L.V., et al., RF Patent 2550156 C1, 2015.

  10. Goswami, L.N., Ma, L., Chakravarty, Sh., et al., Inorg. Chem., 2013, vol. 52, p. 1694. https://doi.org/10.1021/ic3017613

    Article  CAS  PubMed  Google Scholar 

  11. Plesek, J., Chem. Rev., 1992, vol. 92, p. 269. https://doi.org/10.1021/cr00010a005

    Article  CAS  Google Scholar 

  12. Sivaev, I.B., Bregadze, V.I., and Kuznetsov, N.T., Russ. Chem. Bull., 2002, vol. 51, p. 1362. https://doi.org/10.1023/A:1020942418765

    Article  CAS  Google Scholar 

  13. Sivaev, I.B. and Bregadze, V.I., Eur. J. Inorg. Chem., 2009, p. 1433. https://doi.org/10.1002/ejic.200900003

  14. Teixidor, F., Viñas, C., Demonceau, A., and Núñez, R., Pure Appl. Chem., 2003, vol. 75, p. 1305. https://doi.org/10.1351/pac200375091305

    Article  CAS  Google Scholar 

  15. Kuznetsov, N.T., Russ. J. Inorg. Chem., 2002, vol. 47, suppl. 1, p. 68.

  16. Zhizhin, K.Yu., Zhdanov, A.P., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2010, vol. 55, no. 14, p. 2089. https://doi.org/10.1134/S0036023610140019

    Article  CAS  Google Scholar 

  17. Sivaev, I.B., Prikaznov, A.V., and Naoufal, D., Collect. Czech. Chem. Commun., 2010, vol. 75, no. 11, p. 1149. https://doi.org/10.1135/cccc2010054

    Article  CAS  Google Scholar 

  18. Sivaev, I.B., Bregadze, V.I., and Sjöberg, S., Collect. Czech. Chem. Commun., 2002, vol. 67, p. 679. https://doi.org/10.1135/cccc20020679

    Article  CAS  Google Scholar 

  19. Avdeeva, V.V., Malinina, E.A., Sivaev, I.B., et al., Crystals, 2016, p. 6https://doi.org/10.3390/cryst6050060

  20. Malinina, E.A., Avdeeva, V.V., Goeva, L.V., et al., Russ. J. Inorg. Chem., 2010, vol. 55, no. 14, p. 2148. https://doi.org/10.1134/S0036023610140032

    Article  CAS  Google Scholar 

  21. Avdeeva, V.V., Malinina, E.A., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2017, vol. 62, no. 13, p. 1673. https://doi.org/10.1134/S0036023617130022

    Article  CAS  Google Scholar 

  22. Avdeeva, V.V., Malinina, E.A., Zhizhin, K.Yu., et al., Russ. J. Inorg. Chem., 2020, vol. 65, p. 514. https://doi.org/10.1134/S0036023620040026

    Article  CAS  Google Scholar 

  23. Avdeeva, V.V., Malinina, E.A., Zhizhin, K.Yu., et al., J. Struct. Chem., 2019, vol. 60, p. 692. https://doi.org/10.1134/S0022476619050020

    Article  CAS  Google Scholar 

  24. Avdeeva, V.V., Malinina, E.A., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2020, vol. 65, p. 335. https://doi.org/10.1134/S003602362003002X

    Article  CAS  Google Scholar 

  25. Sivaev, I.B., Russ. J. Inorg. Chem., 2019, vol. 64, р. 955.https://doi.org/10.1134/S003602361908014X

  26. Knoth, W.H., Miller, H.C., Sauer, J.C., et al., Inorg. Chem., 1964, vol. 3, p. 159.

    Article  CAS  Google Scholar 

  27. Johnson, J.W. and Brody, J.F., J. Electrochem. Soc., 1982, vol. 129, p. 2213.

    Article  CAS  Google Scholar 

  28. Preetz, W., Srebny, H.-G., and Marsmann, H.C., Z. Naturforsch., A: Phys. Sci., 1984, vol. 39, p. 6.

    Google Scholar 

  29. Preetz, W. and Nachtigal, C., Z. Anorg. Allg. Chem., 1995, vol. 621, p. 1632.

    Article  CAS  Google Scholar 

  30. Scarbrough, F.E. and Lipscomb, W.N., Inorg. Chem., 1972, vol. 11, p. 369.

    Article  CAS  Google Scholar 

  31. Drozdova, V.V., Lisovskii, M.V., Polyakova, I.N., et al., Russ. J. Inorg. Chem., 2006, vol. 51, p. 1552. https://doi.org/10.1134/S003602360610007X

    Article  Google Scholar 

  32. Drozdova, V.V., Zhizhin, K.Yu., Malinina, E.A., et al., Russ. J. Inorg. Chem., 2007, vol. 52, p. 996. https://doi.org/10.1134/S0036023607070042

    Article  Google Scholar 

  33. Muetterties, E.L., Merrifield, R.E., Miller, H.C., et al., J. Am. Chem. Soc., 1962, vol. 84, p. 2506.

    Article  CAS  Google Scholar 

  34. Leites, L.A., Chem. Rev., 1992, vol. 92, p. 279.

    Article  CAS  Google Scholar 

  35. Huang, Y. and Butler, I.S., Inorg. Chim. Acta, 1992, vol. 192, p. 5.

    Article  CAS  Google Scholar 

  36. Warneke, J., Konieczka, S.Z., Hou, G.-L., et al., Phys. Chem. Chem. Phys., 2019, vol. 21, p. 5903.

    Article  CAS  Google Scholar 

  37. Buslaev, Yu.A., Kravchenko, E.A., and Kolditz, L., Coord. Chem. Rev., 1987, vol. 82, p. 9.

    Article  Google Scholar 

  38. Kravchenko, E.A., Gippius, A.A., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 2020, vol. 65, p. 546. https://doi.org/10.1134/S0036023620040105

    Article  Google Scholar 

  39. Einholz, W., Vaas, K., Wieloch, C., et al., Z. Anorg. Allg. Chem., 2002, vol. 628, p. 258.

    Article  CAS  Google Scholar 

  40. Bowden, W., J. Electrochem. Soc., 1982, vol. 129, p. 1249.

    Article  CAS  Google Scholar 

  41. Kuznetsov, N.T. and Zemskova, L.A., Zh. Neorg. K-him., 1982, vol. 27, p. 1320.

    CAS  Google Scholar 

  42. Rupich, M.W., Foos, J.S., and Brummer, S.B., J. Electrochem. Soc., 1985, vol. 132, p. 119.

    Article  CAS  Google Scholar 

  43. Kravchenko, E.A., Gippius, A.A., Polyakova, I.N., et al., Z. Anorg. Allg. Chem., 2017, vol. 643, p. 1939. https://doi.org/10.1002/zaac.201700293

    Article  CAS  Google Scholar 

  44. Avdeeva, V.V., Polyakova, I.N., Malinina, E.A., et al., Inorg. Chim. Acta, 2015, vol. 428, p. 154. https://doi.org/10.1016/j.ica.2014.12.029

    Article  CAS  Google Scholar 

  45. Kravchenko, E.A., Gippius, A.A., Vologzhanina, A.V., et al., Polyhedron, 2016, vol. 117, p. 561. https://doi.org/10.1016/j.poly.2016.06.016

    Article  CAS  Google Scholar 

  46. Kravchenko, E.A., Gippius, A.A., Vologzhanina, A.V., et al., Polyhedron, 2017, vol. 138, p. 140. https://doi.org/10.1016/j.poly.2017.09.022

    Article  CAS  Google Scholar 

  47. Kravchenko, E.A., Gippius, A.A., Korlyukov, A.A., et al., Inorg. Chim. Acta, 2016, vol. 447, p. 22. https://doi.org/10.1016/j.ica.2016.03.025

    Article  CAS  Google Scholar 

  48. Nieuwenhuyzen, M., Seddon, K.R., Teixidor, F., et al., Inorg. Chem., 2009, vol. 48, p. 889.

    Article  CAS  Google Scholar 

  49. Shakirova, O.G., Daletskii, V.A, Lavrenova, L.G., et al., Russ. J. Inorg. Chem., 2013, vol. 58, p. 650.

    Article  CAS  Google Scholar 

  50. Avdeeva, V.V., Vologzhanina, A.V., Ugolkova, E.A., et al., J. Solid State Chem., 2020, vol. 296, p. 121989. https://doi.org/10.1016/j.jssc.2021.121989

    Article  CAS  Google Scholar 

  51. Belov, A.S., Voloshin, Y.Z., Pavlov, A.A., et al., Inorg. Chem., 2020, vol. 59, p. 5845. https://doi.org/10.1021/acs.inorgchem.9b03335

    Article  CAS  PubMed  Google Scholar 

  52. Avdeeva, V.V., Vologzhanina, A.V., Malinina, E.A., et al., Russ. J. Coord. Chem., 2019, vol. 45, no. 4, p. 295. https://doi.org/10.1134/S1070328420050024

    Article  CAS  Google Scholar 

  53. Kravchenko, E.A., Gippius, A.A., Vologzhanina, A.V., et al., Polyhedron, 2017, vol. 127, p. 238. https://doi.org/10.1016/j.poly.2017.02.015

    Article  CAS  Google Scholar 

  54. Avdeeva, V.V., Kravchenko, E.A., Gippius, A.A., et al., Inorg. Chim. Acta, 2019, vol. 487, p. 208. https://doi.org/10.1016/j.ica.2018.12.008

    Article  CAS  Google Scholar 

  55. Kleeberg, F.M. and Schleid, T., Z. Kristallogr., 2017, suppl. 37, p. 107.

  56. Bareiß K. and Schleid, T., Z. Kristallogr., 2019, suppl. 39, p. 87.

  57. Orlova, A.M., Goeva, L.V., Solntsev, K.A., and Kuznetsov, N.T., Russ. J. Inorg. Chem., 1996, vol. 41, p. 769.

    Google Scholar 

  58. Avdeeva, V.V., Buzanov, G.A., Malinina, E.A., et al., Crystals, 2020, vol. 10, p. 389. https://doi.org/10.3390/cryst10050389

    Article  CAS  Google Scholar 

  59. Kuznetsov, N.T., Zemskova, L.A., and Goeva, L.V., Koord. Khim., 1981, vol. 7, no. 2, p. 232.

    CAS  Google Scholar 

  60. Kuznetsov, N.T., Zemskova L.A., and Ippolitov, E.G, Zh. Neorg. Khim., 1981, vol. 26. no. 7, p. 1862.

    CAS  Google Scholar 

  61. Kuznetsov, N.T. and Zemskova, L.A., Zh. Neorg. Kh-im., 1982, vol. 27, no. 5, p. 1320.

    CAS  Google Scholar 

  62. Tiritiris, I. and Schleid, T., Z. Anorg. Allg. Chem., 2003, vol. 629, p. 581. https://doi.org/10.1002/zaac.200390095

    Article  CAS  Google Scholar 

  63. Sivaev, I.B. and Bregadze, V.I., in Handbook of Boron Science with Applications in Organometallics, Catalysis, Materials and Medicine, Hosmane, N.S. and Eagling, R, Eds., World Scientific, 2019, vol. 1, p. 147.

    Google Scholar 

  64. Saleh, M., Powell, D.R., and Wehmschulte, R.J., In-org. Chem., 2016, vol. 55, p. 10617. https://doi.org/10.1021/acs.inorgchem.6b01867

    Article  CAS  Google Scholar 

  65. Hague, C., Patmore, N.J., Frost, C.G., et al., Chem. Commun., 2001, vol. 21, p. 2286. https://doi.org/10.1039/B106719B

    Article  Google Scholar 

  66. Patmore, N.J., Ingleson, M.J., Mahon, M.F., et al., Dalton Trans., 2003, vol. 14, p. 2894. https://doi.org/10.1039/B303537A

    Article  Google Scholar 

  67. Cunha-Silva, L., Carr, M.J., Kennedy, J.D., and Hardie, M.J., Cryst. Growth Des., 2013, vol. 13, p. 3162. https://doi.org/10.1021/cg4005328

    Article  CAS  Google Scholar 

  68. Jenne, C. and Wegener, B., Z. Anorg. Allg. Chem., 2018, vol. 644, p. 1123. https://doi.org/10.1002/zaac.201800358

    Article  CAS  Google Scholar 

  69. Tsang, C.-W., Yang, Q., and Sze, E.T.P., et al., Inorg. Chem., 2000, vol. 39, p. 5851. https://doi.org/10.1021/ic000354r

    Article  CAS  PubMed  Google Scholar 

  70. Anwar, S.El., Holub, J., Tok, O., et al., J. Organomet. Chem., 2018, p. 89.

  71. Kubasov, A.S., Turishev, E.S., Golubev, A.V., et al., Inorg. Chim. Acta, 2020, vol. 507, p. 119589. https://doi.org/10.1016/j.ica.2020.119589

    Article  CAS  Google Scholar 

  72. Sivaev, I.B., Russ. J. Inorg. Chem., 2020, vol. 65, no. 12, p. 1854. https://doi.org/10.1134/S0036023620120165

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out within the framework of the State Assignment of the Kurnakov Institute of General and Inorganic Chemistry RAS in the field of fundamental scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Avdeeva.

Ethics declarations

The authors declare that they have no conflicts of interest-.

Additional information

Dedicated to the memory of our colleague prof. A.A. Pasynskii

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdeeva, V.V., Malinina, E.A., Zhizhin, K.Y. et al. Salts and Complexes Containing the Decachloro-closo-Decaborate Anion. Russ J Coord Chem 47, 519–545 (2021). https://doi.org/10.1134/S1070328421080017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328421080017

Keywords:

Navigation