Skip to main content
Log in

Dynamic Light Scattering for Studying Supported Metal Catalysts

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A new procedure for studying the sizes of metal nanoparticles in supported catalysts by dynamic light scattering (DLS) is proposed. The applicability of DLS to the determination of the particle sizes of active components in a set of different supported metal catalysts, which were previously characterized by TEM and XRD analysis, was found. A good agreement between data obtained using different methods was demonstrated. The application of the new approach makes it possible to reliably identify large nanoparticles, which are often difficult to identify reliably using standard methods due to their small amount in the samples. The procedure proposed is characterized by high rapidity, and it allows one to obtain information on particle sizes 20–30 min after the start of analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Liu, J-X., Wang, P., Xu, W., and Hensen, E.J.M., Engineering, 2017, vol. 3, p. 467.

    Article  Google Scholar 

  2. Haruta, M., Catal. Today, 1997, vol. 36, p. 153.

    Article  CAS  Google Scholar 

  3. Le Valant, A., Drault, F., Maleix, C., Comminges, C., Beauchet, R., Batonneau, Y., Pirault-Roy, L., Especel, C., and Epron, F., J. Catal., 2018, vol. 367, p. 234.

    Article  CAS  Google Scholar 

  4. Tuo, Y.X., Shi, L.J., Cheng, H.Y., Zhu, Y.A., Yang, M.L., Xu, J., Han, Y.F., Li, P., and Yuan, W.K., J. Catal., 2018, vol. 360, p. 175.

    Article  CAS  Google Scholar 

  5. Hughes, R., Deactivation of Catalyst, New York: Academic, 1984.

    Google Scholar 

  6. Bergeret, G. and Gallezot, P., Handbook of Heterogeneous Catalysis, New York: Wiley, 2008.

    Google Scholar 

  7. Matyi, R.J., Schwartz, L.H., and Butt, J.B., Catal. Rev., 1987, vol. 29, p. 41.

    Article  Google Scholar 

  8. Toyao, T., Maeno, Z., Takakusagi, S., Kamachi, T., Takigawa, I., and Shimizu, K., ACS Catal., 2020, vol. 10, p. 2260.

    Article  CAS  Google Scholar 

  9. Palkovits, S., ChemCatChem, 2020, vol. 12, p. 3995.

    Article  CAS  Google Scholar 

  10. Okunev, A.G., Mashukov, M.Y., Nartova, A.V., and Matveev, A.V., Nanomaterials, 2020, vol. 10, p. 1285.

    Article  CAS  PubMed Central  Google Scholar 

  11. Hassan, P.A., Rana, S., and Verma, G., Langmuir, 2015, vol. 31, p. 3.

    Article  CAS  Google Scholar 

  12. Thomas, J.C., J. Colloid Interface Sci., 1987, vol. 117, p. 187.

    Article  CAS  Google Scholar 

  13. Beketov, I.V., Safronov, A.P., Medvedev, A.I., Alonso, J., Kurlyandskaya, G.V., and Bhagat, S.M., AIP Adv., 2012, vol. 2, 022154.

    Article  Google Scholar 

  14. Fissan, H., Ristig, S., Kaminski, H., Asbach, C., and Epple, M., Anal. Methods, 2014, vol. 6, p. 7324.

    Article  CAS  Google Scholar 

  15. Souza, T.G.F., Ciminelli, V.S.T., and Mohallem, N.D.S., J. Phys. Conf. Ser., 2016, vol. 733, 012039.

    Article  Google Scholar 

  16. Dieckmann, Y., Colfen, H., Hofmann, H., and Petri-Fink, A., Anal. Chem. 2009, vol. 81, p. 3889.

    Article  CAS  Google Scholar 

  17. Mehrabadi, B.A.T., Eskandari, S., Khan, U., White, R.D., and Regalbuto, J.R., Adv. Catal. 2017, vol. 61, p. 1.

    CAS  Google Scholar 

  18. Losch, P., Huang, W., Goodman, E.D., Wrasman, C.J., Holm, A., Riscoe, A.R., Schwalbe, J.A., and Cargnello, M., Nano Today, 2019, vol. 24, p. 15.

    Article  CAS  Google Scholar 

  19. Okhlopkova, L.B., Kerzhentsev, M.A., Tuzikov, F.V., Larichev, Y.V., Prosvirin, I.P., and Ismagilov, Z.R., J. Nanopart. Res., 2012, vol. 14, 1089.

    Article  Google Scholar 

  20. Okhlopkova, L.B., Kerzhentsev, M.A., Tuzikov, F.V., Larichev, Y.V., and Ismagilov, Z.R., J. Nanopart. Res., 2012, vol. 14. 1088.

    Article  Google Scholar 

  21. Zhao, Y., Liang, W., Li, Y., and Lefferts, L., Catal. Today, 2017, vol. 297, p. 308.

    Article  CAS  Google Scholar 

  22. Soft Scientific, DynaLS – software for data analysis in Photon Correlation Spectroscopy, http://www.softscientific.com/science/WhitePapers/dynals1/dynals100.htm

  23. Lamsal, R.P., Hineman, A., Stephan, C., Tahmasebi, S., Baranton, S., Coutanceau, C., Jerkiewicz, G., and Beauchemin, D., Anal. Chim. Acta, 2020, vol. 1139, p. 36.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to A.V. Ishchenko, D.A. Zyuzin, N.N. San’kova, and E.V. Parkhomchuk for their assistance in conducting the experiments and to the Center for Collective Use High Technologies and Analytics of Nanosystems, Novosibirsk State University for the provision of measuring equipment.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project nos. AAAA-A21-121011390053-4 and FSUS-2020-0029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Larichev.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and designations: TEM, transmission electron microscopy; XRD, X-ray diffraction; DLS, dynamic light scattering; STS, from solids to sols; CSR, coherent scattering region; SBET, Brunauer–Emmett–Teller specific surface area.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larichev, Y.V. Dynamic Light Scattering for Studying Supported Metal Catalysts. Kinet Catal 62, 528–535 (2021). https://doi.org/10.1134/S0023158421040066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158421040066

Keywords:

Navigation