Skip to main content
Log in

Effect of Synthetic Routes on the Catalytic Activity of FePO4 for p-Nitrophenol Reduction

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The catalytic application of FePO4 synthesized by various chemical routes for the conversion of p‑nitrophenol to p-aminophenol was investigated. The catalyst preparation involved solution technique, polymeric precursor, combustion and reverse micelle methods. The influence of synthetic methods on the catalytic behavior was studied. Characterization of FePO4 was carried out by powder XRD, FT-IR and SEM analysis. The conversion of p-nitrophenol was monitored by UV–Vis spectrophotometer and p-aminophenol was confirmed by UV–Vis, FT-IR, HPLC, 1H NMR and mass spectrometric techniques. FePO4 prepared by combustion method using citric acid showed highest activity due to the large surface area. The conversion of p-nitrophenol to p-aminophenol was achieved in 50 s. The p-nitrophenol reduction reaction follows pseudo-first-order kinetics. The apparent rate constant was found to be 5 × 10–3 s–1 for 0.2 mmol L–1. The results show that FePO4 can be used as an effective catalyst for the hydrogen generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Cui, W.J., Liu, H.J., Wang, C.X., and Xia, Y.Y., Electrochem. Commun., 2008, vol. 10, p. 1587.

    Article  CAS  Google Scholar 

  2. Naeem, A., Mustafa, S., Dilara, B., Ilyas, M., Samad, H.Y., and Safdar, M., J. Chem. Soc. Pak., 2007, vol. 29, p. 1.

    CAS  Google Scholar 

  3. Zhang, X.X., Tang, S.S., Chen, M.L., and Wang, J.H., J. Anal. At. Spectrom., 2012, vol. 27, p. 466.

    Article  Google Scholar 

  4. Borras, C.A., Romagnoli, R., and Lezna, R.O., 2000, Electrochim. Acta, 2000, vol. 45, p. 1717.

    Article  CAS  Google Scholar 

  5. Ng, H.N. and Calvo, C., Can. J. Chem., 1975, vol. 53, p. 2064.

    Article  CAS  Google Scholar 

  6. Gadgil, M.M. and Kulshreshtha, S.K., J. Solid State Chem., 1994, vol. 111, p. 357.

    Article  CAS  Google Scholar 

  7. Klissurski, D., Rives, V., Abadzhjieva, N., Pesheva, Y., Pomonis, P., Sdoukos, T., and Petrakis, D., J. Chem. Soc. Chem. Commun., 1993, vol. 21, p. 1606.

    Article  Google Scholar 

  8. Muneyama, E., Kunishige, A., Ohdan, K., and Ai, M., Appl. Catal, A., 1994, vol. 116, p. 165.

  9. Muneyama, E., Kunishige, A., Ohdan, K., and Ai, M., J. Catal., 1996, vol. 158, p. 378.

    Article  CAS  Google Scholar 

  10. Ai, M. and Ohdan, K., Appl. Catal., A., 1997, vol. 165, p. 461.

  11. Xia, H., Xu, S., Yan, X., and Zuo, S., Fuel Process. Technol., 2016, vol. 152, p. 140.

    Article  CAS  Google Scholar 

  12. Liu, Y., Zili, L., You, Y., Zheng, X., and Wen, J., RSC Adv., 2017, vol. 7, p. 51281.

    Article  CAS  Google Scholar 

  13. Aghaalikhani, S. and Behbahani, F.K., Chem. Select., 2016, vol. 1, p. 5530.

    CAS  Google Scholar 

  14. Ye, J., Zhou, M., Wang, K., Chen, S., Xu, J., and Jiang, J., Chem. Select., 2017, vol. 2, p. 11250.

    CAS  Google Scholar 

  15. Rode, C.V., Vaidya, M.J., and Chaudhari, R.V., Org. Process Res. Dev., 1999, vol. 3, p. 465.

    Article  CAS  Google Scholar 

  16. Kirk-Othmer in Encycl. Chem. Technol., Kkroschwitz, J.I., Ed., New York: Wiley, 1995, vol. 2, ed. 4, p. 580.

    Google Scholar 

  17. Mandlimath, T.R. and Gopal, B., J. Mol. Catal. A: Chem., 2011, vol. 350, p. 9.

    Article  CAS  Google Scholar 

  18. Wu, Y., Zhang, T., Zheng, Z., Ding, X., and Peng, Y., Mater. Res. Bull., 2010, vol. 45, p. 513.

    Article  CAS  Google Scholar 

  19. Shin, K.S., Choi, J.Y., Park, C.S., Jang, H.J., and Kim, K., Catal. Lett., 2009, vol. 133, p. 1.

    Article  CAS  Google Scholar 

  20. Du, X., He, J., Zhu, J., Sun, L., and An, S., Appl. Surf. Sci., 2012, vol. 258, p. 2717.

    Article  CAS  Google Scholar 

  21. Shin, K.S., Cho, Y.K., Choi, J.Y., and Kim, K., Appl. Catal., A., 2012, vol. 413, p. 170.

  22. Ghorai, T.K., Dhak, D., Azizan, A., and Pramanik, P., Mater. Sci. Eng., B, 2005, vol. 121, p. 216.

    Article  Google Scholar 

  23. Thomas, M. and George, K.C., Indian J. Pure Appl. Phys., 2010, vol. 48, p. 104.

    CAS  Google Scholar 

  24. Seoudi, R. and Said, D.A., World J. Nanosci. Eng., 2011, vol. 1, p. 51.

    Article  CAS  Google Scholar 

  25. Sayilkan, H., Erdemoglu, S., Sener, S., Sayilkan, F., Akarsu, M., and Erdemoglu, M., J. Colloid Interface Sci., 2004, vol. 275, p. 530.

    Article  CAS  Google Scholar 

  26. Arora, S., Kapoor, P., and Singla, M.L., React. Kinet. Mech. Cat., vol. 99, p. 157.

  27. Brezova, V., Blazkova, A., Surina, I., and Havlinova, B., J. Photochem. Photobiol. A., vol. 107, p. 233.

  28. Huang, J., Vongehr, S., Tang, S., Lu, H., and Meng, X., J. Phys. Chem. C., 2010, vol. 114, p. 15005.

    Article  CAS  Google Scholar 

  29. Liu, W., Yang, X., and Xie, L., J. Colloid Interface Sci., vol. 313, p. 494.

  30. Kale, B., Shinde, A., Sonar, S., Shingate, B., Kumar, S., Ghosh, S., Venugopal, S., and Shingare, M., Tetrahedron Lett., 2010, vol. 51, p. 3075.

    Article  CAS  Google Scholar 

  31. Lee, J.H., Hong, S.K., and Ko, W.B., J. Ind. Eng. Chem., vol. 16, p. 564.

Download references

ACKNOWLEDGMENTS

The authors thank KPR Institute of Engineering and Technology for providing all the required facilities to carry out the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Triveni Rajashekhar Mandlimath.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Abbreviations and designations: PNP, p-nitrophenol; PAP, p-aminophenol; DMSO, dimethyl sulfoxide; XRD, X-ray diffraction, FTIR, Fourier-transform infrared spectroscopy; SEM, scanning electron microscopy; UV–vis, ultraviolet-visible spectrophotometry; UPLC, ultra-performance liquid chromatography; HPLC, high-performance liquid chromatography; 1H NMR, nuclear magnetic resonance spectroscopy; LC–MS, liquid chromatography with mass spectrometry; BET, Brunauer–Emmett–Teller method; FPCMCA, ferric phosphate prepared by the combustion method using citric acid; FPRMM, ferric phosphate prepared by the reverse micelle method; FPCMS, ferric phosphate prepared by the combustion method using sucrose; FPPPM6, ferric phosphate prepared by the polymeric precursor method heated for 6 h; FPSM, ferric phosphate prepared by the solution method; FPPPM48, ferric phosphate prepared by polymeric precursor method heated for 48 h.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandlimath, T., Kumar, S. Effect of Synthetic Routes on the Catalytic Activity of FePO4 for p-Nitrophenol Reduction. Kinet Catal 62, 536–544 (2021). https://doi.org/10.1134/S0023158421040078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158421040078

Keywords:

Navigation