Skip to main content
Log in

Hydrolytic Stability of Y2.5Nd0.5Al5O12-Based Garnet Ceramics under Hydrothermal Conditions

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the hydrolytic stability of Y2.5Nd0.5Al5O12-based garnet ceramics produced by spark plasma sintering. The ceramics have been tested under hydrothermal conditions in an autoclave and, for comparison, in static mode at room temperature. The mechanisms of yttrium and neodymium leaching from the ceramics have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Orlova, A.I. and Ojovan, M.I., Ceramic mineral waste-forms for nuclear waste immobilization, Materials, 2019, vol. 12, no. 16, paper 2638. https://doi.org/10.3390/ma12162638

  2. Ewing, R.C., Webert, W.J., and Clinard, F.W., Radiation effects in nuclear waste forms for high-level radioactive waste, Prog. Nucl. Energy, 1995, vol. 29, no. 2, pp. 63–127. https://doi.org/10.1016/0149-1970(94)00016-Y

    Article  CAS  Google Scholar 

  3. Potanina, E., Golovkina, L., Orlova, A., et al., Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by “wet” chemistry to sintering ceramics by spark plasma sintering, J. Nucl. Mater., 2016, vol. 473, pp. 93–98. https://doi.org/10.1016/j.jnucmat.2016.02.014

    Article  CAS  Google Scholar 

  4. Tomilin, S.V., Lizin, A.A., Lukinykh, A.N., et al., Radiation resistance and chemical stability of yttrium aluminum garnet, Radiochemistry, 2011, vol. 53, no. 2, pp. 186–190. https://doi.org/10.1134/S1066362211020123

    Article  CAS  Google Scholar 

  5. Burakov, B.E. and Anderson, E.B., Plutonium future - the science, AIP Conf. Proc., 2000, vol. 532, pp. 159–160. https://doi.org/10.1063/1.1292241

    Article  CAS  Google Scholar 

  6. Laverov, N.P., Velichkin, V.I., Omelyanenko, B.I., et al., The Change of Environment and Climate: Natural and Related Technological Disaster, Moscow: IGEM Ross. Akad. Nauk, 2008.

    Google Scholar 

  7. Livshits, T.S., Lizin, A.A., Zhang, J.M., et al., Amorphization of rare earth aluminate garnets under ion irradiation and decay of 244Cm admixture, Geol. Ore Deposits, 2010, vol. 52, no. 4, pp. 267–278. https://doi.org/10.1134/S1075701510040021

    Article  Google Scholar 

  8. Livshits, T.S., Stability of artificial ferrite garnets with actinides and lanthanoids in water solutions, Geol. Ore Deposits, 2008, vol. 50, no. 6, pp. 470–481. https://doi.org/10.1134/S1075701508060056

    Article  Google Scholar 

  9. Lukinykh, A.N., Tomilin, S.V., Lizin, A.A., et al., Radiation and chemical resistance of synthetic ceramics based on ferritic garnet, Radiochemistry, 2008, vol. 50, no. 4, pp. 432–437. https://doi.org/10.1134/S1066362208040176

    Article  CAS  Google Scholar 

  10. Laverov, N.P., Yudintsev, S.V., Livshits, T.S., et al., Synthetic minerals with the pyrochlore and garnet structures for immobilization of actinide-containing wastes, Geochem. Int., 2010, vol. 48, pp. 1–14. https://doi.org/10.1134/S0016702910010015

    Article  Google Scholar 

  11. Scheetz, B.E., Agrawal, D.K., Breval, E., and Roy, R., Sodium zirconium-phosphate (NZP) as a host structure for nuclear waste immobilization—a review, Waste Manage., 1994, vol. 14, pp. 489–505. https://doi.org/10.1016/0956-053X(94)90133-3

    Article  CAS  Google Scholar 

  12. Bykov, D.M., Orlova, A.I., Tomilin, S.V., et al., Americium and plutonium in trigonal phosphates (NZP type) Am1/3[Zr2(PO4)3] and Pu1/4[Zr2(PO4)3], Radiochemistry, 2006, vol. 48, pp. 234–239. https://doi.org/10.1134/S1066362206030052

    Article  CAS  Google Scholar 

  13. Orlova, A.I., Koryttseva, A.K., Kanunov, A.E., et al., Fabrication of NaZr2(PO4)3-type ceramic materials by spark plasma sintering, Inorg. Mater., 2012, vol. 48, no. 3, pp. 313–317. https://doi.org/10.1134/S002016851202015X

    Article  CAS  Google Scholar 

  14. Gregg Daniel, J., Karatchevtseva, I., Triani, G., et al., The thermophysical properties of calcium and barium zirconium phosphate, J. Nucl. Mater., 2013, vol. 441, pp. 203–210. https://doi.org/10.1016/j.jnucmat.2013.05.075

    Article  CAS  Google Scholar 

  15. Raison, P.E., Haire, R.G., Sato, T., and Ogawa, T., Fundamental and technological aspects of actinide oxide pyrochlores: relevance for immobilization matrices, Proc. Symp. Scientific Basis for Nuclear Waste Management XXII, Warrendale: MRS, 1999, vol. 556, pp. 3–10. https://doi.org/10.1557/PROC-556-3

  16. Ewing, R.C., The design and evaluation of nuclear waste forms: clues from mineralogy, Can. Mineral., 2001, vol. 39, no. 3, pp. 697–715. https://doi.org/10.2113/gscanmin.39.3.697/

  17. Strachan, D.M., Scheele, R.D., Icenhower, J.P., et al., Radiation Damage Effects in Candidate Ceramics for Plutonium Immobilization: Final Report, Richland: Pacific North West National Laboratory, 2004.

  18. Strachan, D.M., Scheele, R.D., Buck, E.C., et al., Radiation damage effects in candidate titanates for Pu disposition: pyrochlore, J. Nucl. Mater., 2005, vol. 345, nos. 2–3, pp. 109–135. https://doi.org/10.1016/j.jnucmat.2005.04.064

    Article  CAS  Google Scholar 

  19. Potanina, E.A., Orlova, A.I., Mikhailov, D.A., et al., Spark plasma sintering of fine-grained SrWO4 and NaNd(WO4)2 tungstates ceramics with the scheelite structure for nuclear waste immobilization, J. Alloys Compd., 2019, vol. 774, pp. 182–190. https://doi.org/10.1016/j.jallcom.2018.09.348

    Article  CAS  Google Scholar 

  20. De Groot, G.J. and van der Sloot, H.A., Determination of leaching characteristics of waste minerals leading to environmental product certification, Stabilization and Solidification of Hazardous, Radioactive and Mixed Wastes, Gilliam, T.M. and Wiles, C.C., Eds., Philadelphia: ASTM, 1992, vol. 2, pp. 149–170.

    Google Scholar 

  21. Torras, J., Buj, I., Rovira, M., and de Pablo, J., Semi-dynamic leaching tests of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements, J. Hazard. Mater., 2011, vol. 186, pp. 1954–1960. https://doi.org/10.1016/j.jhazmat.2010.12.093

    Article  CAS  PubMed  Google Scholar 

  22. Xue, Q., Wang, P., Li, J.-S., et al., Investigation of the leaching behavior of lead in stabilized/solidified waste using a two-year semi-dynamic leaching test, Chemosphere, 2017, vol. 166, pp. 1–7. https://doi.org/10.1016/j.chemosphere.2016.09.059

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 20-21-00145 Rosatom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Alekseeva.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseeva, L.S., Nokhrin, A.V., Boldin, M.S. et al. Hydrolytic Stability of Y2.5Nd0.5Al5O12-Based Garnet Ceramics under Hydrothermal Conditions. Inorg Mater 57, 874–877 (2021). https://doi.org/10.1134/S002016852108001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852108001X

Keywords:

Navigation