Skip to main content
Log in

Lamp Processing of the Surface of PdCu Membrane Foil: Hydrogen Permeability and Membrane Catalysis

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the effect of surface lamp processing on the hydrogen permeability of membrane foil produced by rolling an ingot of a Pd–Cu solid solution. Such processing has been shown to remove sorption products from the membrane surface and to significantly improve the hydrogen permeability of the membranes at temperatures of up to 300°C. The use of a reactor with a cleaned PdCu membrane allows the hydrogen yield in the methanol steam reforming process in the presence of a Ni0.2Cu0.8/Ce0.3Zr0.7O2–δ catalyst to be raised relative to that in a conventional flow reactor owing to the displacement of thermodynamic equilibrium as a result of the removal of hydrogen from the reaction zone. The effect of membrane surface cleaning by lamp processing is most clearly demonstrated by examining the yield of high-purity hydrogen in the permeate zone. Whereas at 360°C the yield of high-purity hydrogen in a reactor containing a membrane with a cleaned surface increased by just 15%, membrane surface cleaning by lamp processing ensured a 15‑fold gain at 260°C. This is due to the considerable difference between the hydrogen permeabilities of the membranes at low temperatures and its gradual decrease at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Widén, J., Carpman, N., Castellucci, V., Lingfors, D., Olauson, J., Remouit, F., Bergkvist, M., Grabbe, M., and Waters, R., Variability assessment and forecasting of renewables: a review for solar, wind, wave and tidal resources, Renewable Sustainable Energy Rev., 2015, vol. 44, pp. 356–375. https://doi.org/10.1016/j.rser.2014.12.019

    Article  Google Scholar 

  2. Yaroslavtsev, A.B., Stenina, I.A., and Golubenko, D.V., Membrane materials for energy production and storage, Pure Appl. Chem., 2020, vol. 92, no. 7, pp. 1147–1157. https://doi.org/10.1515/pac-2019-1208

    Article  CAS  Google Scholar 

  3. Kaur, M. and Pal, K., Review on hydrogen storage materials and methods from an electrochemical viewpoint, J. Energy Storage, 2019, vol. 23, pp. 234–249. https://doi.org/10.1016/j.est.2019.03.020

    Article  Google Scholar 

  4. Tsodikov, M.V., Arapova, O.V., Konstantinov, G.I., Bukhtenko, O.V., Ellert, O.G., Nikolaev, S.A., and Vasil’kov, A.Y., The role of nanosized nickel particles in microwave-assisted dry reforming of lignin, Chem. Eng. J., 2017, vol. 309, pp. 628–637. https://doi.org/10.1016/j.cej.2016.10.031

    Article  CAS  Google Scholar 

  5. Lytkina, A.A., Orekhova, N.V., and Yaroslavtsev, A.B., Catalysts for the steam reforming and electrochemical oxidation of methanol, Inorg. Mater., 2018, vol. 54, no. 13, pp. 1315–1329. https://doi.org/10.1134/S0020168518130034

    Article  CAS  Google Scholar 

  6. World Energy Outlook 2019, Paris: Int. Energy Agency, 2019.

  7. Tsodikov, M.V., Kurdymov, S.S., Konstantinov, G.I., Murzin, V.Y., Bukhtenko, O.V., and Maksimov, Y.V., Core–shell bifunctional catalyst for stream methane reforming resistant to H2S: activity and structure evolution, Int. J. Hydrogen Energy, 2015, vol. 40, pp. 2963–2970. https://doi.org/10.1016/j.ijhydene.2015.01.016

    Article  CAS  Google Scholar 

  8. Sánchez-Bastardo, N., Schlögl, R., and Ruland, H., Methane pyrolysis for CO2-free H2 production: a green process to overcome renewable energies unsteadiness, Chem. Eng. Tech., 2020, vol. 92, pp. 1596–1609. https://doi.org/10.1002/cite.202000029

    Article  CAS  Google Scholar 

  9. Torres, D., Pinilla, J.L., and Suelves, I., Screening of Ni–Cu bimetallic catalysts for hydrogen and carbon nanofilaments production via catalytic decomposition of methane, Appl. Catal., A, 2018, vol. 559, pp. 10–19. https://doi.org/10.1016/j.apcata.2018.04.011

  10. Ouyang, M.Z., Boldrin, P., Maher, R.C., Chen, X.L., Liu, X.H., Cohen, L.F., and Brandon, N.P., A mechanistic study of the interactions between methane and nickel supported on doped ceria, Appl. Catal., B, 2019, vol. 248, pp. 332–340. https://doi.org/10.1016/j.apcatb.2019.02.038

    Article  CAS  Google Scholar 

  11. Pudukudy, M., Yaakob, Z., Jia, Q., and Takriff, M.S., Catalytic decomposition of methane over rare earth metal (Ce and La) oxides supported iron catalysts, Appl. Surf. Sci., 2019, vols. 467–468, pp. 236–248. https://doi.org/10.1016/j.apsusc.2018.10.122

    Article  CAS  Google Scholar 

  12. Nishii, H., Miyamoto, D., Umeda, Y., Hamaguchi, H., Suzuki, M., Tanimoto, T., Harigai, T., Takikawa, H., and Suda, Y., Catalytic activity of several carbons with different structures for methane decomposition and by-produced carbons, Appl. Surf. Sci., 2019, vol. 473, pp. 291–297. https://doi.org/10.1016/j.apsusc.2018.12.073

    Article  CAS  Google Scholar 

  13. Pinaeva, L.G., Noskov, A.S., and Parmon, V.N., Prospects for the direct catalytic conversion of methane into useful chemical products, Catal. Ind., 2017, vol. 9, pp. 283–298. https://doi.org/10.1134/S2070050417040067

    Article  Google Scholar 

  14. He, J., Yang, Z., Zhang, L., Li, Y., and Pan, L., Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on g-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming, Int. J. Hydrogen Energy, 2017, vol. 42, pp. 9930–9937. https://doi.org/10.1016/j.ijhydene.2017.01.229

    Article  CAS  Google Scholar 

  15. Águila, G., Jiménez, J., Guerrero, S., Gracia, F., Chornik, B., Quinteros, S., and Araya, P., A novel method for preparing high surface area copper zirconia catalysts. Influence of the preparation variables, Appl. Catal., A, 2009, vol. 360, pp. 98–105.

  16. Sá, S., Hugo, S., Brandão, L., José, M.S., and Adélio, M., Catalysts for methanol steam reforming—a review, Appl. Catal., B, 2010, vol. 99, pp. 43–57.

    Article  Google Scholar 

  17. Jones, S.D., Neal, L.M., and Hagelin-Weaver, H.E., Steam reforming of methanol using Cu–ZnO catalysts supported on nanoparticle alumina, Appl. Catal., B, 2008, vol. 84, pp. 631–642.

    Article  CAS  Google Scholar 

  18. Conant, T., Karim, A.M., Lebarbier, V., Wang, Y., Girgsdies, F., Schlögl, R., and Datye, A., Stability of bimetallic Pd–Zn catalysts for the steam reforming of methanol, J. Catal., 2008, vol. 257, pp. 64–70.

    Article  CAS  Google Scholar 

  19. Amjad, U., Vita, A., Galletti, C., Pino, L., and Specchia, S., Comparative study on steam and oxidative steam reforming of methane with noble metal catalysts, Ind. Eng. Chem. Res., 2013, vol. 52, pp. 15428–15436. https://doi.org/10.1021/ie400679h

    Article  CAS  Google Scholar 

  20. Lytkina, A.A., Orekhova, N.V., Ermilova, M.M., Belenov, S.V., Guterman, V.E., Efimov, M.N., and Yaroslavtsev, A.B., Bimetallic carbon nanocatalysts for methanol steam reforming in conventional and membrane reactors, Catal. Today, 2016, vol. 268, pp. 60–67. https://doi.org/10.1016/j.cattod.2016.01.003

    Article  CAS  Google Scholar 

  21. Wang, L.-C., Liu, Q., Chen, M., Liu, Y.-M., Cao, Y., He, H.-Y., and Fan, K.-N., Structural evolution and catalytic properties of nanostructured Cu/ZrO2 catalysts prepared by oxalate gel-coprecipitation technique, J. Phys. Chem., 2007, vol. 111, pp. 16549–16557. https://doi.org/10.1021/jp075930k

    Article  CAS  Google Scholar 

  22. Lytkina, A.A., Orekhova, N.V., Ermilova, M.M., and Yaroslavtsev, A.B., The influence of the support composition and structure (MxZr1–xO2–d) of bimetallic catalysts on the activity in methanol steam reforming, Int. J. Hydrogen Energy, 2018, vol. 43, pp. 198–207. https://doi.org/10.1016/j.ijhydene.2017.10.182

    Article  CAS  Google Scholar 

  23. Ockwig, N.W. and Nenoff, T.M., Membranes for hydrogen separation, Chem. Rev., 2007, vol. 107, no. 10, pp. 4078–4110.

    Article  CAS  Google Scholar 

  24. Briceño, K., Montanè, D., Garcia-Valls, R., Iulianelli, A., and Basile, A., Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation, J. Membr. Sci., 2012, vol. 415, pp. 288–297. https://doi.org/10.1016/j.memsci.2012.05.015

    Article  CAS  Google Scholar 

  25. Sazali, N., Mohamed, M.A., and Salleh, W.N.W., Membranes for hydrogen separation: a significant review, Int. J. Adv. Manuf. Technol., 2020, vol. 107, pp. 1859–1881. https://doi.org/10.1007/s00170-020-05141-z

    Article  Google Scholar 

  26. Fernandez, E., Medrano, J.A., Melendez, J., Parco, M., Viviente, J.L., Van Sint Annaland, M., Gallucci, F., and Pacheco Tanaka, D.A., Preparation and characterization of metallic supported thin Pd–Ag membranes for hydrogen separation, Chem. Eng. J., 2016, vol. 305, pp. 182–190. https://doi.org/10.1016/j.cej.2015.09.119

    Article  CAS  Google Scholar 

  27. Zhao, C., Sun, B., Jiang, J., and Xu, W., H2 purification process with double layer bcc-PdCu alloy membrane at ambient temperature, Int. J. Hydrogen Energy, 2020, vol. 45, pp. 17540–17547. https://doi.org/10.1016/j.ijhydene.2020.04.250

    Article  CAS  Google Scholar 

  28. Ievlev, V.M., Prizhimov, A.S., and Dontsov, A.I., Structure of the α–β interface in a PdCu solid solution, Phys. Solid State, 2020, vol. 62, no. 1, pp. 59–64. https://doi.org/10.1134/S1063783420010138

    Article  CAS  Google Scholar 

  29. Lee, S.M., Xu, N., Kim, S.S., Li, A., Grace, J.R., Lim, J.C., Boyd, T., Ryi, S.K., Susdorf, A., and Schaadt, A., Palladium/ruthenium composite membrane for hydrogen separation from the off-gas of solar cell production via chemical vapor deposition, J. Membr. Sci., 2017, vol. 541, pp. 1–8. https://doi.org/10.1016/j.memsci.2017.06.093

    Article  CAS  Google Scholar 

  30. Petriev, I.S., Lutsenko, I.S., Voronin, K.A., Pushankina, P.D., and Baryshev, M.G., Hydrogen permeability of surface-modified Pd–Ag membranes at low temperatures, IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 791, paper 012058.

  31. Ievlev, V.M., Dontsov, A.I., Morozova, N.B., Roshan, N.R., Serbin, O.V., Prizhimov, A.S., and Solntsev, K.A., Techniques for surface cleaning of membrane foil from palladium-based solid solutions, Inorg. Mater., 2020, vol. 56, no. 10, pp. 1059–1064. https://doi.org/10.1134/S0020168520100052

    Article  CAS  Google Scholar 

  32. Basov, N.L., Ermilova, M.M., Orekhova, N.V., and Yaroslavtsev, A.B., Membrane catalysis in the dehydrogenation and hydrogen production processes, Russ. Chem. Rev., 2013, vol. 82, no. 4, pp. 352–368. https://doi.org/10.1070/RC2013v082n04ABEH004324

    Article  CAS  Google Scholar 

  33. Helmi, A., Fernandez, E., Melendez, J., Tanaka, D.A.P., Gallucci, F., and van Sint Annaland, M., Fluidized bed membrane reactors for ultra pure H2 production—a step forward towards commercialization, Molecules, 2016, vol. 21, paper 376. https://doi.org/10.3390/molecules21030376

  34. Franchi, G., Capocelli, M., De Falco, M., Piemonte, V., and Barba, D., Hydrogen production via steam reforming: a critical analysis of MR and RMM, Membranes, 2020, vol. 10, paper 10. https://doi.org/10.3390/membranes10010010

  35. Liguori, S., Iulianelli, A., Dalena, F., Piemonte, V., Huang, Y., and Basile, A., Methanol steam reforming in an Al2O3 supported thin pd-layer membrane reactor over Cu/ZnO/Al2O3 catalyst, Int. J. Hydrogen Energy, 2014, vol. 39, pp. 18702–18710. https://doi.org/10.1016/j.ijhydene.2013.11.113

    Article  CAS  Google Scholar 

  36. Mironova, E.Yu., Lytkina, A.A., Ermilova, M.M., Efimov, M.N., Zemtsov, L.M., Orekhova, N.V., Karpacheva, G.P., Bondarenko, G.N., Yaroslavtsev, A.B., and Muraviev, D.N., Ethanol and methanol steam reforming on transition metal catalysts supported on detonation synthesis nanodiamonds for hydrogen production, Int. J. Hydrogen Energy, 2015, vol. 40, no. 8, pp. 3557–3565. https://doi.org/10.1016/j.ijhydene.2014.11.082

    Article  CAS  Google Scholar 

  37. Piskin, F. and Öztürk, T., Combinatorial screening of Pd–Ag–Ni membranes for hydrogen separation, J. Membr. Sci., 2017, vol. 524, pp. 631–636. https://doi.org/10.1016/j.memsci.2016.11.066

    Article  CAS  Google Scholar 

  38. Ievlev, V.M., Dontsov, A.I., Belonogov, E.K., Kannykin, S.V., and Solntsev, K.A., α ⇆ β phase transformations in rolled foil of the Pd–57 at % Cu solid solution, Inorg. Mater., 2017, vol. 53, no. 11, pp. 1163–1169. https://doi.org/10.1134/S0020168517110048

    Article  CAS  Google Scholar 

  39. Stenina, I.A., Voropaeva, E.Yu., Veresov, A.G., Kapustin, G.I., and Yaroslavtsev, A.B., Effect of precipitation pH and heat temperature on the properties of hydrous zirconium dioxide, Russ. J. Inorg. Chem., 2008, vol. 53, no. 3, pp. 350–356. https://doi.org/10.1007/s11502-008-3002-0

    Article  Google Scholar 

  40. Uluc, A.V., Moa, J.M.C., Terryn, H., and Bottger, A.J., Hydrogen sorption and desorption related properties of Pd-alloys determined by cyclic voltammetry, J. Electroanal. Chem., 2014, vol. 734, pp. 53–60. https://doi.org/10.1016/j.jelechem.2014.09.021

    Article  CAS  Google Scholar 

  41. Wvarezza, R.C., Montemayor, M.C., and Fatas, E., Electrochemical study of hydrogen absorption in polycrystalline palladium, J. Electroanal. Chem., 1991, vol. 313, pp. 291–301.

    Article  Google Scholar 

  42. Morozova, N.B., Vvedenskii, A.V., Maksimenko, A.A., and Dontsov, A.I., Thin layer multicycle cathodic–anodic chronoamperometry of atomic hydrogen injection–extraction into metals with regard to the stage of phase boundary exchange, Russ. J. Electrochemistry, 2018, vol. 54, no. 4, pp. 344–354. https://doi.org/10.1134/S1023193518040067

    Article  CAS  Google Scholar 

  43. Stenina, I.A. and Yaroslavtsev, A.B., Interfaces in materials for hydrogen power engineering, Membr. Membr. Technol., Membr. Membr. Tekhnol., 2019, vol. 9, no. 3, pp. 137–144. https://doi.org/10.1134/S2517751619030065

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-19-00232) and in part (synthesis and characterization of the catalyst) by the Russian Federation Ministry of Science and Higher Education (state research target for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Dontsov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironova, E.Y., Dontsov, A.I., Morozova, N.B. et al. Lamp Processing of the Surface of PdCu Membrane Foil: Hydrogen Permeability and Membrane Catalysis. Inorg Mater 57, 781–789 (2021). https://doi.org/10.1134/S0020168521080057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521080057

Keywords:

Navigation